

MenuBox
by Cloanto Corporation

The MenuBox software and documentation are Copyright © 1998-2023 Cloanto Corporation. All rights reserved. No
part of this package may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means, magnetic, memristive, optical, quantum mechanical,
electronic, biological, chemical, mechanical, acoustic, manual or otherwise without the prior written permission of
the copyright holders, or as indicated here or in the EULA. The use of this document is subject to the terms of the
EULA that accompanies the MenuBox package.

Cloanto may have copyrights, trademarks, patents, patent applications, and other intellectual property rights covering
items contained in MenuBox and its documentation. Except as expressly provided in any written license agreement
from Cloanto, the furnishing of this product and its documentation does not give you any license to these copyrights,
trademarks, patents, or other intellectual property.

Cloanto and MenuBox are either registered trademarks or trademarks of Cloanto Corporation in the United States
and/or other countries. Microsoft, Windows, Windows Me, Windows NT, Windows XP, Windows Vista, Windows 7,
Windows 8, Windows Server 2003, Windows Server 2008 and Windows Server 2012 are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. All other trademarks
and service marks are the property of their respective owners.

© 1998-2023 Cloanto Corporation

Contents

4

Table of Contents

Part 1 Introducing MenuBox 6

... 71 New Features

Part 2 Getting Started 11

... 111 Overview

... 122 The MenuBox Wizard

... 133 The Sign Project Tool

... 134 Registering MenuBox

... 145 Quality Checklist

Part 3 Reference 17

... 171 Command Line Options

... 182 Configuration File Options

... 243 Windowless Mode

... 264 Text Window Mode

... 345 HTML Window Mode

... 396 The MenuBox Extended DOM

... 447 Paths and Current Directory

... 468 AutoRun CDs and DVDs

... 499 Redistributable Files

Part 4 Additional Resources 51

... 511 Web Resources

... 512 ISO 639-1 Language Codes

... 533 Windows Character Set Codes

Part 1

Introducing MenuBox

6

1 Introducing MenuBox

Welcome to MenuBox

Thank you for choosing MenuBox for your AutoRun projects and for your professional menu
window design needs. It is our mission to deliver not only the most practical, reliable and easy to
use tool in its field, but also the finest documentation and support. Should you ever have
questions, comments or special requirements, please do not hesitate to let us know. We always
appreciate your feedback.

Your Cloanto Team

Getting Started

Please refer to the following sections of this documentation for instructions on creating your first
projects:

Overview

The MenuBox Wizard

The Sign Project Tool

Registering MenuBox

Quality Checklist

Technical Reference

The following sections cover in more detail the operation and configuration of MenuBox, making it
possible to manually build sophisticated projects, or to further customize projects created with
the MenuBox Wizard:

Command Line Options

Configuration File Options

Windowless Mode

Text Window Mode

HTML Window Mode

The MenuBox Extended DOM

Paths and Current Directory

AutoRun CDs and DVDs

Redistributable Files

Online Articles

Additional technical articles are available online. Here are some examples:

JavaScript Error Trapping

Using HIDEFOCUS to Remove Dotted Borders

Using X-UA-Compatible to Set the Compatibility Mode

Disabling Click and Other System Sounds

Support for High-DPI Displays

Additional Web Resources

Additional Examples and Information

To view and download additional examples created with MenuBox, or if you need more specific
information about technical or licensing issues, please refer to the MenuBox Homepage
(cloanto.com/menubox).

https://cloanto.com/contact/
https://cloanto.com/kb/13-199
https://cloanto.com/kb/13-200
https://cloanto.com/kb/13-201
https://cloanto.com/kb/13-202
https://cloanto.com/kb/13-203
https://cloanto.com/menubox/
https://cloanto.com/menubox/

Introducing MenuBox

7

1.1 New Features

MenuBox includes the following new features.

Version 6.0.3.0

New native 64-bit executable for Windows PE

Version 6.0.2.0

Improved handover to default browser for external link actions

Version 6.0.1.0

Improved application icon high-DPI support
New context menu options in HTML window mode

Version 6.0.0.0

High-DPI display support
New DPIAware and DisableNavigationSound options in HTML window mode
New ReadFile and WriteFile methods in MenuBox Extended DOM
Finer version checking via MenuBoxBrowser key

"Intuitive AutoRun" now uses autorun.txt with added text instructions instead of autorun.inf
(which may be blocked by antivirus applications)

Version 5.2.2.0

Fixed possible process hang on exit

Modified behavior when Esc key is pressed in HTML window mode (it can now be processed by
the script code)

Version 5.2.1.0

Improved diagnostic messages when a [MenuBox] section is added directly to an autorun.inf
file and some components cannot be found

Version 5.2.0.0

Updated initial window when MenuBox.exe is launched in stand-alone mode (no companion
files)

Addressed "Intuitive AutoRun" configuration issue in MenuBox Wizard

Version 5.1.0.0

Passed the official "Compatible with Windows 7" logo test.

New browser windows opened from MenuBox now use the default system browser, rather than
Internet Explorer, on Windows XP SP 2 and higher.

Version 5.0.1.0

Modified behavior when Enter key is pressed in HTML window mode and HTML content does not
have any selectable items: in this case, MenuBox does not close the window any more.

Version 5.0.0.0

New MenuBox Wizard features: support for web applications (wrap Web 2.0 apps, etc.),
"Intuitive AutoRun" (stores MenuBox as autorun.exe at root of medium, hiding all other files),
and various other refinements, including new dialogs for improved handling of relative paths.

New [MenuBox] section may now be placed in "autorun.inf" itself to reference a different
directory while minimizing files at the root of the medium

New OpenOnlyOnce and RememberPosition options in Text window mode and HTML window
mode

Introducing MenuBox

8

Changed behavior of Execute method to not return error if user cancels UAC confirmation
request

Added Exit option to Execute method of MenuBox Extended DOM

Terminology in MenuBox Wizard, documentation, examples and website made more consistent

Project built with new compiler (Visual Studio 2008 with Legacy Extender) and new installer
(WiX toolset)

New website

Version 4.0.3.0

Added "Optimize for video" option in MenuBox Wizard (disables effects which might slow down
video playback inside MenuBox window). Excluded non-file URLs from path processing
introduced in versions 3.1.2.0 and 4.0.1.0.

Version 4.0.2.0

Improved detection of default applications that do not have the Open action associated to a
document type specified via the DocumentType key of the [ApplicationCheck] section

Version 4.0.1.0

Software updated and independently tested to comply with Certified for Windows Vista Logo
requirements

New Sign Project tool (project signature feature) replaces and extends plain text license key in
configuration file

Added Architecture key in [ApplicationCheck] section

Added Architecture property to the MenuBox Extended DOM

Added /x86 and /x64 command line options

Added Filex86 and Filex64 keys in [ApplicationCheck] and [Windowless] sections

Version 3.2.1.0

Fixed a recently-introduced bug in the processing of environment variables in paths (the issue
only occurred if the second character in a path was a backslash character, and would cause the
following character to be filtered)

Version 3.2.0.0

New Resizable and Show options in HTML window mode

Version 3.1.2.0

Modified language detection (used for localized configuration files, and in the Language property
of the MenuBox Extended DOM) to reflect current user interface language preferences, rather
than the Windows default locale on multilingual systems

Modified processing of environment variables in file system paths and in ExpandPath method of
the MenuBox Extended DOM to normalize multiple consecutive backslash characters that may
be present after merging path elements

Version 3.1.1.0

Added ExpandPath method and Medium property to the MenuBox Extended DOM

Version 3.1.0.0

Added support for nonvolatile variables (persistent settings) via new GetNV and SetNV methods
in MenuBox Extended DOM

New GetRegistry method in MenuBox Extended DOM to read registry values and to check for
the existence of registry keys

Added support for environment variables in file system paths

Added support for volume labels (names) to FindDrive method

https://cloanto.com/legacyextender/

Introducing MenuBox

9

New Message method in MenuBox Extended DOM

Version 3.0.4.0

New Minimize, Maximize, Restore, Move and Size methods in MenuBox Extended DOM

New NoExecute option in HTML window mode

Version 3.0.2.0

New Text Selection option in HTML window mode

Version 3.0.0.0

MenuBox Wizard to quickly build projects without having to manually edit the menubox.ini or
AutoRun files

Support for non-Latin character sets

New FindDrive and PlaySound methods in MenuBox Extended DOM

Version 2.3.2.0

Added Title property to the MenuBox Extended DOM

Version 2.3.1.0

Integrated binaries with Windows Error Reporting (WER) system

Version 2.3.0.0

Added Exists method and Language property to the MenuBox Extended DOM

Added optional Scripting argument to MenuBoxBrowser key in [ApplicationCheck] section

Version 2.2.2.0

Improved version detection of ActiveX objects

Version 2.2.1.0

Minor change in handling of scrollbars on Internet Explorer 3 systems

Modified one error message text

Version 2.2.0.0

New ScrollBars option in HTML window mode

Version 2.1.1.0

Updated examples

Improved dynamic handling of possible dependencies on wininet.dll, olepro32.dll and
oleaut32.dll on Windows 95 Retail Edition without service packs or Internet Explorer (a specific
error message is now displayed if for example internet access is required by the MenuBox
window content)

Fixed a bug introduced in a 2003 recompile of version 2.0 (the original 2002 version is not
affected)

Version 2.0.0.0

New HTML window mode

Text window mode functionality includes new effects such as fade-in and fade-out

Part 2

Getting Started

11

2 Getting Started

This section covers:

Overview

The MenuBox Wizard

The Sign Project Tool

Registering MenuBox

Quality Checklist

2.1 Overview

MenuBox can be used in three different modes:

Windowless (e.g. to open a PDF, Word, PowerPoint, etc. document using the CD or DVD
AutoRun functionality)

Text window (simple menus combined with graphics, mouseover information, sound, fade-in/
fade-out effects, etc.)

HTML window (HTML content in custom browser container, with options for borderless or full
screen rendering, kiosk applications, etc.)

The three modes can be combined, so that if for example a certain document viewer could not be
detected and/or installed, or if MenuBox is running on a very old version of Windows which does
not have at least Internet Explorer 3, then the text window (which does not require any external
viewers or Windows components) is opened.

The MenuBox Wizard includes preset templates to easily build projects in all three operating
modes.

MenuBox Executable and Options

The redistributable MenuBox software functionality is provided by a single executable file
("menubox.exe") combined with one or more of:

Command line option(s) (optional, with the default configuration file in the current directory
being opened if no command line options are given)

Configuration file(s) (always required when a window is opened or conditional code is used;
default file names are "menubox.ini" and/or language-localized names, e.g. "menubox-en.ini",
"menubox-de.ini", "menubox-fr.ini", "menubox-it.ini", etc.)

HTML document(s) (only required if MenuBox is used in browser mode)

Optional AutoRun files

When the MenuBox Wizard is used, the above files are created and configured automatically.

If MenuBox is used as a simple launcher (no window, no conditional code), then the command line
options are all that is required (e.g. "MenuBox ReadMe.txt"). All command line options also have a
configuration file equivalent, so that it is possible to keep the command line short and simple, and
work on the configuration file. A configuration file (usually named "menubox.ini") is required when
MenuBox is used to open a window (both for text menus and for HTML content) and when
conditional code is used (for example to install viewer software or to fall back to a text window if
the installation of a required viewer fails, or if browser mode is not possible due to lack of
Internet Explorer 3 or higher).

HTML Documents: Windowless vs. HTML Window Mode

Unlike other types of documents, which can only be viewed by launching the appropriate viewer
(which MenuBox can take care of automatically), HTML documents can be displayed in two
different ways:

From the command line (e.g. "MenuBox MyDocument.html") or using an equivalent
configuration file entry, in which case the default browser and settings are used to open the
document

By indicating the desired document name and window size and settings in the MenuBox

Getting Started

12

configuration file, in which case MenuBox itself becomes a browser container (requires Internet
Explorer 3 or higher, which can be installed by adding the appropriate conditions and setup
instructions in the configuration file)

Related Topics

For an overview of introductory and reference sections, see Welcome.

For more information on registering the software, see Registering MenuBox.

For more information about paths and directories, see Paths and Current Directory.

For more information about commands and files distributed on AutoRun-enabled media, see
AutoRun CDs and DVDs.

For more information about redistributable files, see Redistributable Files.

2.2 The MenuBox Wizard

The MenuBox Wizard makes it possible to built MenuBox projects by using preset templates,
without requiring any knowledge of the technical details involving the various MenuBox and
AutoRun configuration files. Projects created with the MenuBox Wizard can then be further edited,
e.g. by manually modifying the MenuBox configuration file output by the wizard.

To launch the MenuBox Wizard open MenuBox Wizard in the MenuBox program group of the
Start menu.

Project Files

The MenuBox Wizard can be used to work on an existing set of project files (e.g. a set of HTML
documents, or a complex CD AutoRun project) or to put together the files as the various details
are collected by the wizard. In either case, the destination (output) folder entered in the wizard
can be either the final destination of the project (e.g. a set of CD master files), if available, or a
project-specific folder used only for the MenuBox portion (e.g. in "My Documents").

Files with Dependencies

If the files used by the final MenuBox project have not yet been organized into a single
redistributable set, the MenuBox Wizard can copy the various items which you indicate, and copy
them to the output directory as appropriate. This is usually a straightforward process, as it
involves copying atomic files (e.g. a CD icon file, a viewer installation executable, etc.) However,
in some cases, files may have dependencies, and MenuBox Wizard has no way of knowing that it
has to copy more than one required file.

Cases in which files referenced by MenuBox may depend on other files include:

HTML projects, where only the default page is entered into MenuBox Wizard (which does not
"know" about linked files, including images)

Executable files with linked libraries (DLLs) and other resources, in which case the main
executable file name is entered into MenuBox, but other required components are not

In these cases it is important to manually make sure that the entire set of files is available in the
final project directory.

Project Signature

Files created with the MenuBox Wizard include a signature in the project data. If the MenuBox
configuration file (named "menubox.ini" by default) is modified manually (without using the
MenuBox Wizard), the signature must be updated with the Sign Project tool.

Related Topics

For more information about signing a project, see The Sign Project Tool.

Getting Started

13

2.3 The Sign Project Tool

The Sign Project tool creates a checksum of the MenuBox configuration file (INI file) and writes it
to the Signature key of the [Project] section of the file, encoding it together with a hash of the
software license information into a single non-editable binary field.

A signed project can be redistributed as a registered application, without exposing the license key
in plain text, and limiting the possibility of third-party modifications to your files.

The Sign Project tool must be run each time an INI file is modified (unless it is modified by the
MenuBox Wizard, which automatically updates the signature). If the signature is not correct, the
project will run with a "Free Version" message.

When the sign Project tool is run, it also checks whether the MenuBox redistributable application
file in the project directory is up to date. If not, the tool can optionally update this executable file
with the newer version taken from the current MenuBox installation.

To launch the tool open Sign Project in the MenuBox program group of the Start menu.

Command Line

The Sign Project tool can also be invoked from the command line:

menuboxw.exe [/sign:file] [/?]

If the /sign option is not followed by the file name, a dialog is opened to specify the file manually.

2.4 Registering MenuBox

Limitations of the Unregistered Version

The command line options, which allow MenuBox to run in windowless mode with no conditional
code, can be used with no limitations without requiring any software license details to be set.

The more advanced features made available through the configuration file may be used without
purchasing the software or entering the license serial information, however in this case a small
advertising window briefly appears each time MenuBox starts or exits.

The registered version of MenuBox offers the additional advantage of creating a unique publisher
entity and namespace. The GetNV, SetNV, OpenOnlyOnce and RememberPosition features
operate within this scope, which belongs exclusively to a given registered user and to its MenuBox
applications.

After registration, projects can be signed with the Sign Project tool, which makes sure that the
project can be redistributed as a registered version without the "Free Version" message, and
limits the possibilities of tampering with the project itself.

Entering the License Key

To disable the "Free Version" message in the redistributable packages the license serial number
must be entered during installation or in the Registration dialog which is accessible from the Start
menu (in the MenuBox program group). The licensing information is automatically added to the
redistributable files created by the MenuBox Wizard.

Getting Started

14

In case of manual editing (no MenuBox Wizard) of the MenuBox configuration file (named
"menubox.ini" by default) which is distributed with MenuBox, the licensing information can be
added or updated manually via the Sign Project tool, which writes this information to the
Signature key of the [Project] section of the file.

Web Links

Click here to register the software now.

2.5 Quality Checklist

Step Reference

1 Redistribution implies far greater risks and
responsibilities than personal use. Even if you
normally don't virus-check your files, we
recommend that you do so before publishing your
project. Make sure that your antivirus software and
virus definition data are up-to-date.

2 Test your project. Ideally, you should run the
project on a different system and/or drive letter.
Make sure that all links work, including links in
documents referenced by MenuBox (HTML,
PowerPoint, etc.)

Paths and Current Directory

3 Check for script errors. For HTML projects, test the
content in IE with script debugging enabled (not
disabled, as it is by default).

4 If your MenuBox configuration files use conditional
code, make sure that all conditions are tested and
that the associated sections are executed.

Configuration File Options

5 If your project is designed to run as an AutoRun
application, create and mount an ISO image, or
burn a real CD or DVD and test the medium on as
many computers as possible.

AutoRun CDs and DVDs

6 Are you using MenuBox to open documents which
require a specific viewer (e.g. PowerPoint Viewer,
Acrobat Reader, Shockwave Player, etc.)? Use the
[ApplicationCheck] section to verify that the
required viewer/version actually exists on the
target system, and automatically install it or at
least display a message if necessary. Check out
the website of the viewer's publisher (e.g.
Microsoft, Adobe, Macromedia, etc.) to determine
technical and legal requirements for redistribution.

Configuration File Options

7 Test your fonts. If you use fonts, did you make
sure that these fonts are available on all systems,
including Windows 95 (like HTML, the [LinkFont]
and [DescriptionFont] sections in text window mode
support multiple font names to provide for fallback
choices)? Did you test the fallback font? If you are
using MenuBox in HTML window mode, are your
font sizes expressed in pixels ("px" units,
recommended to preserve the intended pixel-exact
sizes)? If you are not sure, try opening the HTML
files with Internet Explorer, and toggle the View/
Text Size setting from Largest to Smallest: the
page content should not change.

Text Window Mode, HTML Window Mode

https://link.cloanto.net/shop-menubox

Getting Started

15

Step Reference

8 Don't forget extreme conditions, if applicable. Your
project may run on systems with different screen
resolutions. Does your window fit in 800x600
pixels? And in 640x480 (although you may decide
to not support this resolution)? If you are using a
full-screen window, does it display well on larger
resolutions, e.g. on a 5120x2880 pixel High-DPI
setup?

Text Window Mode, HTML Window Mode

9 Did you miss a feature, or did you experience a
problem? Please let us know!

Contact Form

https://cloanto.com/contact/

Part 3

Reference

17

3 Reference

This section covers:

Getting Started

Command Line Options

Configuration File Options

Windowless Mode

Text Window Mode

HTML Window Mode

The MenuBox Extended DOM

Paths and Current Directory

AutoRun CDs and DVDs

Redistributable Files

Quality Checklist

ISO 639-1 Language Codes

Windows Character Set Codes

3.1 Command Line Options

The redistributable MenuBox component consists of a single executable file named
"menubox.exe", which can be run in all contexts where executable files can be launched (from the
command line, from an "autorun.inf" file, etc.) The software is digitally signed using Microsoft
Authenticode technology, which makes it possible to verify both the origin and the integrity of the
file.

Like all Windows executable files, MenuBox can be launched either as "menubox.exe" or as
"MenuBox.exe", "menubox" or "MenuBox" (case insensitive, with or without the ".exe" suffix),
however indicating the complete file name (with the extension) may result in slightly faster access
to the file. "menubox.exe" may be renamed (e.g. to "setup.exe" or "autorun.exe") without
affecting its functionality, file properties or digital signature.

If MenuBox is launched without command line options, then the software tries to open the default
configuration file ("menubox.ini" or a matching localized version, e.g. "menubox-de.ini", etc.) in
the directory containing the MenuBox executable file. If "menubox.exe" is renamed then the
default base name of the configuration file is changed accordingly (e.g. if "menubox.exe" is
renamed to "autorun.exe" then "menubox.ini" becomes "autorun.ini", etc., as long as no /m
option is used to explicitly set the name of the configuration file). A different directory may also
be specified in the "autorun.inf" file itself.

The format of the command line options is:

menubox.exe [file] [/x86:file] [/x64:file] [/p:parameters] [/d:current-dir] [/
v:verb] [/s:show] [/a] [/w] [/m:ini-file] [/?]

The following options are available.

Option Description

file Document or executable file. If omitted,
MenuBox processes the default configuration
file or the file referenced by /m.

/x86:file Identical to file, but only executes the file on an
x86 operating system. If present, file is
ignored. May be combined with /x64 to open or
execute different files on different systems.

/x64:file Identical to file, but only executes the file on an
x64 operating system. If present, file is
ignored. May be combined with /x86 to open or
execute different files on different systems.

Reference

18

Option Description

/p:parameters Command line parameters to be passed to the
executable file, e.g. /p:"param1 param2
param3".

/d:current-dir Changes the current drive and directory for the
launched application. Supports absolute and
relative paths. When launched from autorun.inf
paths are relative to the root of the medium by
default.

/v:verb Action to be performed, e.g. "edit", "explore",
"print", "properties", etc. The default action for
most document types is "open".

/s:show Show options, e.g. "minimized", "maximized",
etc. The default is "normal".

/a Add absolute path information to the file
argument.

/w Wait for the launched application to exit.

/m:ini-file Process a MenuBox configuration file, which
supports conditional code, menu windows and
other advanced features. Defaults to
"menubox.ini". Optional additional file ending
with "-xx.ini" (where "xx" is language code as
per ISO 639-1) is given priority if language
code matches current user locale.

/? Display help information.

The documentation of the corresponding keys as they are used in the [Windowless] section of the
configuration file includes a more detailed description of each option.

Related Topics

For more information about paths and directories, see Paths and Current Directory.

For more information about using commands in autorun.inf, see AutoRun CDs and DVDs.

For practical examples, see Web Resources.

3.2 Configuration File Options

Overview

The configuration file options of MenuBox include and extend the functionality provided by the
command line options. A single INI file (named "menubox.ini" by default) is usually sufficient to
cover most needs, including windowless mode, text window mode, HTML window mode,
conditional code, application setup and fallback options. Multiple files are used to support
language-localized configurations, and can also be employed for more complex conditional
branches and/or to create multiple levels of text menus (just like multiple levels of HTML menus
can be created using different HTML pages).

Localization (Internationalization)

Multiple INI files, each having a name ending with "-xx.ini" (where "xx" is a two-letter language
code as per ISO 639-1), can be placed in the same directory as the default INI file
("menubox.ini", i.e. the same base name as the MenuBox executable file, unless a different name
is specified using the /m command line option). When MenuBox starts, it first checks to see if a
configuration file with a name matching the current system language exists (e.g. "menubox-
en.ini" for English, "menubox-de.ini" for German, "menubox-es.ini" for Spanish, "menubox-fr.ini"

Reference

19

for French, "menubox-it.ini" for Italian, etc.), and then, if no match is found, it opens the file with
no "-xx" language code (e.g. "menubox.ini").

There should always be a fallback file with no language code (e.g. use "menubox.ini", and not
"menubox-en.ini", for English, if you want MenuBox to use the English language configuration in
case no other configuration file matches the user's language). There is no need to use language-
coded files if only one language is supported (e.g. use "menubox.ini", and not "menubox-en.ini",
for English, if English is the only language which is supported by your project).

If the MenuBox executable file is renamed, for example from "menubox.exe" to "autorun.exe",
"setup.exe", etc., then the default base name of the .ini file (if not set explicitly with the /m
command line option) automatically changes accordingly: "autorun-xx.ini"/"autorun.ini", "setup-
xx.ini"/"setup.ini", etc.

INI File Structure

A MenuBox INI file is an 8-bit text file (ISO 8859-1 character set) divided into sections, each
containing one or more keys. Each key contains one or more values. The file can be created and
modified with a simple editor like Notepad or WordPad (Save as type: Text Document).

Example:

[SectionName]
keyname=value
;comment
keyname=value, value, value ;comment

Section names are enclosed in square brackets, and must begin at the beginning of a line. Section
and key names are case-insensitive, and cannot contain spacing characters. The key name is
followed by an equal sign ("=", decimal code 61), optionally surrounded by spacing characters,
which are ignored.

Multiple values for a key are separated by a comma followed by at least one spacing character.

Numerical values may be entered in decimal, hexadecimal (digits prefixed by "0x") or octal
format (digits prefixed by a "0" character). In Boolean keys "True" and "False", and "Yes" and
"No" are equivalent to 1 and 0.

When the MenuBox parser encounters an unrecognized section name, the entire section (with all
its keys) is skipped. Within a known section, only unrecognized keys are skipped.

Both Space (decimal code 32) and Horizontal Tab (HT, decimal code 9) are acceptable spacing
characters.

Lines are terminated by a CR (decimal code 13) and/or LF (decimal code 10) character.

Comments are introduced by a semicolon character (";", decimal code 59). Comments must
begin at the beginning of a line or after a spacing character. Comments terminate at the end of
the line.

The Cloanto website contains additional technical information about the INI file format as it is
used in MenuBox.

Overview of Sections

In the following documentation of the MenuBox configuration file, section descriptions are grouped
into four parts.

Shared settings (used with all three operation modes):

[Project] (one per file)

[ApplicationCheck] (multiple sections allowed)

Windowless mode:

[Windowless] (one per file)

Text window mode:

[TextWindow] (one per file)

https://link.cloanto.net/specs-ini

Reference

20

[LinkArea] (one per file)

[LinkFont] (one per file)

[DescriptionArea] (one per file)

[DescriptionFont] (one per file)

[Link] (multiple sections allowed)

HTML window mode:

[HTMLWindow] (one per file)

[Project]

This section contains the keys used to enter the software license information and to optionally
assign a unique ID to each MenuBox project.

Keys:
Signature = String

If you are using a registered version of MenuBox you can sign your projects to enable full
functionality and disable the "Free Version" message which is otherwise displayed when
MenuBox starts and exits. Click here to register the software now.

The Signature key contains licensing information combined with a checksum of the INI file
content itself. This key cannot be added or edited manually. It is inserted automatically by
the MenuBox wizard, and can also be inserted or updated manually by using the Sign
Project tool.

If the INI file is modified, but the signature is not updated, MenuBox will work as if it were
not registered ("Free Version" message).

UniqueID = String

The registered version of MenuBox features a publisher-unique namespace in which the
GetNV, SetNV, OpenOnlyOnce and RememberPosition features operate. This avoids
conflicts with settings by other publishers. GetNV and SetNV are shared (global) within this
scope, which belongs exclusively to a given registered publisher and to its MenuBox
applications.

The UniqueID key may be used to further define a project-specific (local) scope for the
OpenOnlyOnce and RememberPosition features. The Signature key and the UniqueID key
are combined so that each publisher is guaranteed to have an independent range of unique
identifiers. UniqueID is not used by the GetNV and SetNV functions. UniqueID is ignored if
no Signature key is indicated (which is always the case for unregistered versions of the
software).

For additional per-publisher nonvolatile storage options, see the GetNV and SetNV methods
of the MenuBox Extended DOM, and the OpenOnlyOnce and RememberPosition keys in the
[TextWindow] and [HTMLWindow] sections.

For example:

[Project]
Signature = "12,34,56,78,9A,BC,DE,F0,12,34,56,78,9A"
UniqueID = "MyProduct - Version 1.0"

Please note that the Signature key shown above is for example purposes only. You can enter a
UniqueID key, and let the Sign Project tool add the Signature key at a later stage, when you are
finished editing.

[ApplicationCheck]

This section not only controls the conditional execution of code (e.g. to install a viewer or to
display an error message), but also determines which of the windowless, text window or HTML
window sections should be switched off (ignored) based on certain conditions. An optional
confirmation or information message can be displayed to the user before the conditional launch of
an executable, or before exiting MenuBox, in case no other fallback option (e.g. a text menu) is
available.

https://link.cloanto.net/shop-menubox

Reference

21

The existence of an application can be verified searching by document extension (e.g. ".html") or
looking for the globally unique identifier (GUID) or the programmatic identifier (ProgID) of a
program or COM object. Once an application has been found based on these criteria, it can
additionally be checked to be at least a given version and/or to match a known file name. The
Architecture key can be used to invoke different code on x86 and x64 systems.

This section can execute code (e.g. launch the setup procedure of a document viewer) if a certain
condition (e.g. the presence of a viewer for a certain document type) is not met. It can optionally
check again to see if the condition is met after the conditional code has been executed. Based on
these results, it is possible to disable one or more of the [Windowless], [TextWindow] and
[HTMLWindow] sections in the same INI file. When two or more of these sections are active
(because they have not been disabled by conditional code in [ApplicationCheck]), they are
processed in the following order:

[Windowless] -> [TextWindow] -> [HTMLWindow]

Multiple [ApplicationCheck] sections may appear in the same configuration file. A [Windowless],
[TextWindow] or [HTMLWindow] section only needs to be disabled by a single [ApplicationCheck]
section in order to be permanently disabled (sections are disabled using an OR rule, not following
an AND logic of [ApplicationCheck] success/failure results).

Keys:

AbsolutePath = Boolean

If this key is set to True, MenuBox inserts absolute path information at the beginning of the
string referenced by the Parameters key.

This key is described in more detail in the [Windowless] section.

ApplicationFile = String

This key can be combined with DocumentType or ClassID to make sure that the executable
file (EXE, DLL, OCX, etc.) associated with a certain document extension or ClassID has the
desired file name (e.g. "iexplore.exe", "netscape.exe", "acrord32.exe", "acroread.exe",
"readerx86.exe", "readerx64.exe", etc.) You can indicate multiple acceptable names by
listing several comma-separated strings.

We recommend to use this feature with care, as future versions of a known application may
have unpredictable file names, unless the publisher has guaranteed backward compatibility
(e.g. because of widespread use in a command line context). If you know the ClassID of
the specific application you are looking for, that is usually a safer way of identifying it,
especially if it is officially documented by the publisher of the software.

ApplicationVersion = String

This key can be combined with DocumentType or ClassID to make sure that the executable
file (EXE, DLL, OCX, etc.) associated with a document type or COM object has at least the
specified version. The string may contain only digits and dot characters (e.g. "4", "1.2.3.4",
"5.00.2195", etc.)

Architecture = String

This key is used to enable the section only on a desired (x86 or x64) system. The string
must be either "x86" or "x64" and matches the host operating system accordingly. If the
string does not match the system, the entire section is ignored. If the key is not present,
the section is enabled on all systems.

ClassID = String

This key can indicate either the GUID of a COM object you want to check for in the
"{########-####-####-####-############}" format (where "#" are
hexadecimal digits, e.g. "{D27CDB6E-AE6D-11cf-96B8-444553540000}" for the
Macromedia Flash ActiveX control), or the OLE short name in the "servername.typename"
format (e.g. "ShockwaveFlash.ShockwaveFlash").

If you are in doubt between using DocumentType and ClassID, and you did not find official
documentation concerning the identifier of the application you are looking for, you should
consider using the DocumentType key to avoid the risk that the software publisher changes

Reference

22

the ClassID in a different product version.

The DocumentType, ClassID and MenuBoxBrowser keys are mutually exclusive (you can
use only one for each [ApplicationCheck] section).

Directory = Path

This string indicates the directory which will become the current directory before processing
the File key. By default, the current directory is the directory containing the configuration
file.

This key is described in more detail in the [Windowless] section.

DocumentType = String

This key indicates a document file extension (including the initial dot, e.g. ".pdf", ".doc",
".pps", ".html", etc.) for which you want to verify that a registered application exists. For
example, use ".doc" to verify that a program capable of opening Word documents exists
(WordPad, which can read different Word formats, is an optional component of Windows,
and you may want to install the free Word viewer if neither WordPad nor Word nor the
Word viewer are already installed).

The DocumentType, ClassID and MenuBoxBrowser keys are mutually exclusive (you can
use only one for each [ApplicationCheck] section).

File = File Name

If the conditional keys resulted in a failure to find a matching application, and if the user did
not give a negative answer to the optional MessageAsk message, then the file referenced
by this key, if present, is executed.

The key is described in more detail in the [Windowless] section.

Filex64 = File Name

Identical to File, but only opens or executes the file on an x64 (64-bit) operating system.

The key is described in more detail in the [Windowless] section.

Filex86 = File Name

Identical to File, but only opens or executes the file on an x86 (32-bit) operating system.

The key is described in more detail in the [Windowless] section.

MenuBoxBrowser = Basic | Advanced, Scripting

Use this key with the "Basic" or "Advanced" argument to verify that the system on which
MenuBox is running is capable of rendering HTML contents to support the MenuBox HTML
window mode. "Basic" (or "IE3") requires Windows 98 or higher, or Windows 95 or Windows
NT 4.0 with at least Internet Explorer 3 (released in August 1996 and included with Windows
95 v. 950b, also known as OEM Service Release 2). "Advanced" requires Windows 98 or
higher, or Windows 95 or Windows NT 4.0 with at least Internet Explorer 4 (released in
September 1997). The MenuBox Extended DOM functionality requires the "Advanced" (or
"IE4") level.

Alternatively to the "Basic" or "Advanced" argument, it is possible to explicitly indicate a
required "browser version" (as installed on the system): "IE3" (equivalent to "Basic"),
"IE4" (equivalent to "Advanced"), "IE5", "IE6", "IE7", "IE8", "IE9", "IE10", "IE11" or "IE12".

Windows 7, Windows Server 2008 and higher, as well as previous systems with Internet
Explorer 8 (released in March 2009) installed (i.e. MenuBoxBrowser key set to "IE8")
further support using X-UA-Compatible to set the Compatibility Mode.

Use the "Scripting" argument to verify that scripting is enabled for the security zone to
which the document referenced by the URL key belongs. Local files, including files on CD
and DVD media, belong to the My Computer security zone, where scripting is always
enabled (if scripting were disabled for this zone by editing the registry, system functionality
such as the ability to properly display help files would be compromised as well).

The DocumentType, ClassID and MenuBoxBrowser keys are mutually exclusive (you can
use only one for each [ApplicationCheck] section).

https://cloanto.com/kb/13-201

Reference

23

MessageAsk = String

This key can be used to display a confirmation message before running the conditional
code. For example: "Your system does not appear to be able to display PowerPoint Slide
Show documents. Would you like to install the PowerPoint Viewer now?"

The message is only displayed if the conditions defined by the previous keys are not met.

MessageFail = String

This message is displayed if the conditions set for this [ApplicationCheck] section are not
met. This key can be used with or without the File key, and with Retry enabled or disabled.

For example: "Your system does not appear to be able to display PDF documents. We
recommend that you install Acrobat Reader and then open MyDocument.pdf on this CD."

Parameters = String

This string indicates a set of one or more parameters (e.g. a file name, or command line
options) which is passed to the executable referenced by the File key.

This key is described in more detail in the [Windowless] section.

ProceedFailure = NoWindowless | NoTextWindow | NoHTMLWindow

This key, which accepts multiple comma-separated values, specifies which sections should
be disabled (ignored) if the conditions set for this [ApplicationCheck] section are not met.

ProceedSuccess and ProceedFailure are often used together to disable different sections
based on the outcome of the [ApplicationCheck] section. It is also possible to combine
multiple [ApplicationCheck] sections, each with their ProceedSuccess/ProceedFailure key
pair, for more sophisticated handling, e.g. to display Flash or HTML content depending on
the availability (and/or successful installation) of the desired component, or otherwise fall
back to a MenuBox text window.

ProceedSuccess = NoWindowless | NoTextWindow | NoHTMLWindow

A single configuration file may contain [Windowless], [TextWindow] and [HTMLWindow]
sections. This key, which accepts multiple comma-separated values, specifies which
sections should be disabled (ignored) if the conditions set for this [ApplicationCheck] section
are met.

Show = Normal | Minimized | Maximized | Custom String or Numerical ID

This key indicates how the application referenced by the File key should be opened
(minimized window, maximized window, etc.) The default behavior is always "Normal".

This key is described in more detail in the [Windowless] section.

Retry = Boolean

If this key is set to True, which it is by default, MenuBox waits until the execution of the
application referenced by File has completed, and then repeats the verification of the
conditions set for this [ApplicationCheck] section. The result of this final verification, instead
of the result of the initial verification, is then used to process the MessageFail,
ProceedSuccess and ProceedFailure keys. This behavior is useful to verify the successful
installation of a document viewer or media player.

Verb = Open | Edit | Explore | Print | Properties | Custom String

This key indicates the action to be performed, e.g. "edit", "explore", "print", "properties",
etc. The default action is application-specific, and for most application and document types
it is "open".

This key is described in more detail in the [Windowless] section.

Related Topics

For more detailed reference information about the INI file format, see Cloanto Implementation
of INI File Format (web link).

https://link.cloanto.net/specs-ini
https://link.cloanto.net/specs-ini

Reference

24

For more information about paths and directories, see Paths and Current Directory.

For more information on two-letter language codes, see ISO 639-1 Language Codes.

For an introduction to using templates to build suitable configuration files, see The MenuBox
Wizard.

For more information about signing a project, see The Sign Project Tool.

For practical examples, see Web Resources.

3.3 Windowless Mode

Overview

In windowless mode MenuBox acts as a non-graphical document or application launcher. The
functionality made available by the [Windowless] section of the configuration file, which is
described below, is equivalent to that provided by the command line options.

The [Windowless] section also shares most keys which the [ApplicationCheck] section (where a
file is launched based on certain conditions) and the [Link] section (where a file is launched based
on user action), and with the HTML window mode's window.external.execute() method and the
corresponding menubox_execute() script function, where the launching of files is controlled from
within an HTML document. The only exception in this group is that the Wait key is not available in
the [Link] section (where control over user interaction is always immediately returned to
MenuBox) and in the [ApplicationCheck] section (where Wait behavior is implicit in the Retry
action).

[Windowless]

A single, optional [Windowless] section may appear anywhere in the MenuBox configuration file. If
the [TextWindow] and/or [HTMLWindow] section are also present, [Windowless] is always
executed first, before a window is opened. If one or more [ApplicationCheck] sections are
present, then the [Windowless] section is processed only if no [ApplicationCheck] section has
disabled the [Windowless] section as a result of its ProceedSuccess or ProceedFailure keys.

Keys:

AbsolutePath = Boolean

If this key is set to True, MenuBox inserts absolute path information at the beginning of the
string referenced by the Parameters key.

For example, if you create a DVD-ROM application where:

1.MenuBox and its configuration file are stored in the "MenuBox" directory on the
DVD

2.The DVD is run from the D drive on the user's computer

3.The File key indicates "myprogram.exe"

4.The Parameters key is set to "mydocument.xyz"

5.The Directory key is set to "..\myprograms\"

MenuBox will first set the current directory to "myprograms", and then launch
"myprogram.exe D:\myprograms\mydocument.xyz" (instead of "myprogram.exe
mydocument.xyz", as would be the case without the AbsolutePath flag). Quote characters
are recognized and/or added (if the path contains spaces) around the path and file name.

This key has been designed to support some specific applications where the document
name is the first or only parameter, and in which functionality (for example the ability to
reference links) is impaired unless the full (absolute) path is indicated with the document
file name.

This key is optional.

Directory = Path

Reference

25

This string indicates the directory which will become the current directory before processing
the File key. By default, the current directory is the directory containing the configuration
file.

Be sure to indicate a directory path which does not include a drive letter (otherwise your
code will not work if it is executed on a computer with different drive letters) and which is
relative to the configuration file.

This key is optional.

File = File Name

This key indicates the name of the executable or document file to be opened. It is most
frequently either used alone or in combination with a path set via the Directory key.

The string can be a file name, with or without a path (e.g. "setupviewer.exe", "viewers
\ppview97.exe", "..\viewers\myreader.exe" etc.) If you do indicate a path, be sure to
indicate a path which does not include a drive letter (otherwise your code will not work if it
is executed on a computer with different drive letters) and which is relative to the
configuration file (or the directory referenced by the Directory key, if used). You don't need
to indicate a path if the file to be executed is in the same directory as the configuration file
(or the directory referenced by the Directory key, if used).

If you reference an HTML file using only its name, e.g. "mydoc.html", some web browsers,
including Internet Explorer, may try to open the HTTP(S) address "http://mydoc.html/"
instead of the intended local file. To avoid this, be sure to always set the AbsolutePath key
to True when using the File key to open local documents which are to be opened by
internet-enabled viewers. This will make sure that the application knows that it has to deal
with a local file rather than with an item on the internet.

In order not to introduce a difference between the current directory and the directory in
which the file is stored, it is, especially for older software, most prudent to use the Directory
key to specify a path, instead of indicating a path in the File key. This is because some
older and/or poorly written programs can get "confused" if they need to use relative paths
to open additional files which are not in the same directory in which they are running from.
If the Directory key is used, then the file and path (if indicated) referenced by the File key
are relative to the path of the Directory option.

Filex64 = File Name

Identical to File, but only opens or executes the file on an x64 (64-bit) operating system.

This key is optional. If the File key is also present, it is ignored. The key may be combined
with Filex86 in the same section to open or execute different files on different systems.

Filex86 = File Name

Identical to File, but only opens or executes the file on an x86 (32-bit) operating system.

This key is optional. If the File key is also present, it is ignored. The key may be combined
with Filex64 in the same section to open or execute different files on different systems.

Parameters = String

This string indicates an optional set of one or more parameters (e.g. a file name, or
command line options) which is passed to the executable referenced by the File key.

This key is optional.

Show = Normal | Minimized | Maximized | Custom String or Numerical ID

This optional key indicates how the application referenced by the File key should be opened
(minimized window, maximized window, etc.) The default behavior is always "Normal".

This key is processed by the application, not by MenuBox. If you are familiar with the
specific application you are going to launch you can also use custom strings or their
equivalent numerical ID. The full set of supported custom strings is: Hide, ShowNormal,
Normal, ShowMinimized, ShowMaximized, Maximize, ShowNoActivate, Show, Minimize,
ShowMinNoActive, ShowNA, Restore, ShowDefault, ForceMinimize.

This key is optional.

Reference

26

Verb = Open | Edit | Explore | Print | Play | Properties | Custom String

This optional key indicates the action to be performed, e.g. "edit", "explore", "print", "play",
"properties", etc. The default action is application-specific, and for most application and
document types it is "open".

The exact meaning of some generic verbs may vary. For example, explicitly using "open"
when trying to run an executable file may, on some systems, open a hex editor displaying
the content of the file, instead of causing the file to be run. In this case, not using the Verb
key is the best way to ensure that an executable file referenced by the File key is actually
run, rather than edited.

This key is optional.

Wait = Boolean

If this key is set to True MenuBox waits until the execution of the application referenced by
File has completed before exiting. If the application was already open (instead of having
been launched by MenuBox) then Wait has no effect.

This key is optional.

Related Topics

For an introduction to using templates to build suitable configuration files, see The MenuBox
Wizard.

For practical examples, see Web Resources.

3.4 Text Window Mode

Overview

In text window mode MenuBox works as a stand-alone text menu application, compatible with all
versions of Windows (Windows 95 and higher), without requiring any additional components to
display its content. The text-based menu approach is powerful, yet lightweight and easy to
master. A window can be normal, borderless or full screen, featuring a background and icon
graphics, sounds, fade-in, fade-out and translucency effects (rendered on systems supporting this
feature) and separate rectangular regions for menu texts and mouseover information texts. Each
menu item can independently make use of the same sophisticated application and document
handling options as those of the [Windowless] section.

The text window mode is configured via a [TextWindow] section, which describes window
attributes, and additional sections to define the coordinates and fonts of the menu and information
text regions. The actual menu items and their menu and information texts and actions are defined
in one or more [Link] sections.

Reference

27

Image and Sound Objects

MenuBox uses different main file formats for the multimedia content used in text window mode:

Windows bitmap format (BMP) for the window background (compatible with Windows 95, 98 and
Me);

PNG and JPEG formats for the window background (requires Windows 2000 or higher);

Windows icon format (ICO), used in the window title, on the toolbar when the software is in use
or minimized, as well as in the ALT+TAB selection window;

Windows wave format (WAV), used when the window is opened or closed and for mouseover
and mouse click effects.

BMP and PNG files may be palette-based or true color. True color images are automatically color-
reduced to palette-mode if the display does not support true color, however we recommend that
you try to color-reduce true color images to 256 colors (palette-based), and use the smaller 256-
color bitmap file if your graphics software is able to produce a high-quality result.

ICO files should include at least the 16x16 format. Depending on the operating system version
and icon size settings, the 32x32 and 48x48 formats are used mainly in the ALT+TAB selection
window. The 24x24 format is used as the smallest icon instead of the 16x16 one on displays that
have more than 96 DPI. The 16x16 icon is automatically resized if other formats are not
available, however the result tends to be "blurry", so it is recommended to include additional
native formats.

For maximum compatibility with older versions of Windows (including Windows 95), WAV sound
files should be saved using either the Windows PCM (uncompressed pulse code modulation) codec
or the Microsoft ADPCM (slightly lossy 4:1 compression) codec.

All coordinates are expressed in 96-DPI pixels from the top-left edge of the usable window area
(i.e. excluding the title bar and window borders, if present), counting from position 0:0. By
default, the usable size of the window automatically matches the size of the background image set
via the BackgroundBitmap key. Objects are referenced relative to their top left corner.

All keys referencing image, icon and sound files may optionally include path information, relative
to the directory containing the configuration file.

DPI Scaling

On high-DPI displays (more than 96 DPI), text window mode content is automatically scaled by
MenuBox. All display units (width, height, positions) remain unchanged at 96 DPI.

If you are providing a high-resolution background image to be used for both high-DPI and lower
density displays, do the following:

1.In the BackgroundBitmap key, reference an image having a pixel density that is a multiple
of the canonical 96 DPI, and set the position value to Fill

2.Set the Height or Width key (but not both) to the original 96-DPI size value

For example, to display a window content that will have a size of 320x240 pixels on a "normal"
display and a size of 640x480 pixels on a 192-DPI display, set a 640x480-pixel background
image, while setting Width to 320 and Height to 240. The window will have the same visual size
also on a hypothetical 384-DPI display, except that the image will be scaled up (looking a bit
"blurred").

[TextWindow]

A single, optional [TextWindow] section may appear anywhere in the MenuBox configuration file.
If the [Windowless] section is also present, [Windowless] is always executed first, before a
window is opened. If one or more [ApplicationCheck] sections are present, then the [TextWindow]
section is processed only if no [ApplicationCheck] section has disabled the [TextWindow] section
as a result of its ProceedSuccess or ProceedFailure keys. Although it would in most cases not be
practical to open both a text window and an HTML window, if both [TextWindow] and
[HTMLWindow] exist in the same configuration file and remain enabled following all
[ApplicationCheck] conditions, then the text window is opened first and the HTML window is
opened after the first window has been closed.

Reference

28

Keys:

AlwaysOnTop = Boolean

This option ensures that the MenuBox window is always displayed on top of other windows.
In full screen mode this effectively hides all other windows, even if opened by user action
or by system events occurring after the launch of MenuBox.

This key is optional.

BackgroundColor = Red Value, Green Value, Blue Value

These three values represent the Red, Green and Blue components of the window
background color, in a range from 0 to 255 (0, 0, 0 is black, 255, 255, 255 is white, 255, 0,
0 is red, etc.)

This key is optional.

BackgroundBitmap = File Name, Fill | Fit | Stretch | Center

This key indicates the file name of the background image to be used for the window, and its
position within the window. If you need to retain compatibility with Windows 95, 98 or Me,
use the BMP file format. Otherwise, feel free to use either BMP, PNG or JPEG.

The position value can be set to one of Fill, Fit, Stretch or Center (default, compatible with
projects created for earlier versions of MenuBox). If necessary, Fill resizes the image so
that it fills the entire window (some image parts may be cropped), while Fit resizes the
image so that no parts are cropped (but some window areas may remain blank). Fill and Fit
resize the image by preserving the original image ratio, while Stretch does not. Center
never resizes the image.

If no Width and Height keys are used, the window size is automatically adjusted to the width
and height of the image (assumed to be at 96 DPI). For optimal quality across different
display densities, it is therefore recommended to set the Height and Width keys and to use
an image having a pixel density that is a multiple of the canonical 96 DPI.

In Fill or Fit mode it is sufficient to indicate one bitmap dimension (Width or Height key), in
which case the other is calculated at runtime to be the exact pixel size sufficient to display
the full image.

This key is optional. If only the file name is set, the position value defaults to Center.

Borderless = Boolean

If this key is set to True, the window is opened without title bar or borders. Since such a
window has no close button it is important to include an appropriate [Link] section to close
the window (i.e. with the Exit flag enabled).

This key is optional.

FullScreen = Boolean

If this key is set to True, the window is opened in full screen (ignoring the Width and Height
keys).

Due to the broad potential diversity of screen sizes and ratios, the use of full-screen text
window mode is only advised when MenuBox is deployed on known hardware (e.g. internal
use, custom kiosks, etc.)

This key is optional, and is usually combined with the Borderless key.

Height = Number

This number indicates the height of the window, excluding the title bar and borders. The
value is in 96-DPI units.

This key is optional. In order to be compatible with different display densities, it is
recommended to explicitly set one value (for Fill or Fit positioning) or both values (for
Center or Stretch mode). If the value is not set, it is autocalculated from the Width (for Fill
or Fit modes), or it defaults to the height of the image referenced by BackgroundBitmap.

Reference

29

Icon = File Name

This key indicates the file name of the icon, in Windows icon format (ICO), used in the
window title, on the toolbar when the software is in use or minimized, as well as in the ALT
+TAB selection window.

This key is optional. If no icon file is provided, the built-in default icon is used.

OnClickSound = File Name

This key indicates the file name of the sound file, in Windows wave format (WAV), to be
played when a menu item is opened.

This key is optional.

OnLoadFade = Milliseconds, From Value, To Value

This key defines the duration, initial translucency and final translucency of the transition
effect applied when the window is opened. In the translucency values 0 indicates complete
transparency, and 100 complete opacity. If the final translucency value is smaller than 100
the window remains in a partially translucent state.

Not all versions of Windows support translucency. Where translucency is not supported
MenuBox opens the window normally, without transition effect.

This key is optional. By default the window appears normally (no fade-in effect). If a single
value is set in this key, the fade effect defaults from 0 to 100.

OnLoadSound = File Name

This key indicates the file name of the sound file, in Windows wave format (WAV), to be
played when the window is opened.

This key is optional.

OnMouseoverSound = File Name

This key indicates the file name of the sound file, in Windows wave format (WAV), to be
played when the mouse pointer passes over a menu item.

This key is optional.

OnUnloadFade = Milliseconds, From Value, To Value

This key defines the duration, initial translucency and final translucency of the transition
effect applied when the window is closed. In the translucency values 0 indicates complete
transparency, and 100 complete opacity. To avoid any undesired flickering, the initial
translucency value should be the same as the final translucency of the OnLoadFade effect.

This effect can be disabled in by a [Link] section which closes the window, e.g. to open a
new instance of MenuBox displaying a different menu level.

Not all versions of Windows support translucency. Where translucency is not supported
MenuBox closes the window normally, without transition effect.

This key is optional. By default the window is closed normally (no fade-out effect). If a
single value is set in this key, the fade effect defaults from 100 to 0.

OnUnloadSound = File Name

This key indicates the file name of the sound file, in Windows wave format (WAV), to be
played when the window is closed.

This effect can be disabled in by a [Link] section which closes the window, e.g. to open a
new instance of MenuBox displaying a different menu level.

This key is optional.

OpenOnlyOnce = Boolean

If this key is set to True, multiple instances of the same MenuBox project will open or
reopen only one window. By default, MenuBox opens a new window each time it is invoked,
even if it is executed with reference to the same MenuBox executable and configuration file.

Reference

30

This may result in multiple identical windows being opened at the same time, for example
when the same AutoRun-enabled medium is repeatedly inserted and ejected. which may or
may not be desirable. If you use the UniqueID key to assign a unique identifier (e.g. a
sequence number, a product-unique string, etc.) to a configuration file, and you set the
OpenOnlyOnce key, then multiple instances of the same MenuBox executable which refer to
a configuration file with the same UniqueID will cause the first MenuBox window to be
brought to the front, instead of new windows being opened.

This key is optional. In order to exclude conflicts with other publishers, the software must
be registered and a project-specific UniqueID key must be set.

RememberPosition = Boolean

If this key is set to True, MenuBox will remember the position and size of the window when
the same project is opened again. This information is stored in the user registry, within an
exclusive namespace defined by the publisher registration and the UniqueID key.

This key is optional. In order to exclude conflicts with other publishers, the software must
be registered and a project-specific UniqueID key must be set.

Title = String

This key indicates the window title text. The same text is also used on the toolbar when
MenuBox is in use or minimized.

This key is optional.

Width = Number

This number indicates the width of the window, excluding borders. The value is in 96-DPI
units.

This key is optional. In order to be compatible with different display densities, it is
recommended to explicitly set one value (for Fill or Fit positioning) or both values (for
Center or Stretch mode). If the value is not set, it is autocalculated from the Height (for Fill
or Fit modes), or it defaults to the width of the image referenced by BackgroundBitmap.

[LinkArea]

This sections defines the rectangular region (text column) in which menu texts are displayed.

Keys:

Height = Number

This key indicates the height of the region. The value is in 96-DPI units.

Left = Number

This key indicates the position of the region, from the left margin of the window (excluding
the window border). The value is in 96-DPI units.

Top = Number

This key indicates the position of the region, from the top margin of the window (excluding
the window title). The value is in 96-DPI units.

Width = Number

This key indicates the width of the region. The value is in 96-DPI units.

[DescriptionArea]

This sections defines the rectangular region (text column) in which mouseover information texts
are displayed. The [DescriptionArea] section is optional and does not need to be used if no
information texts are used.

Keys:

Reference

31

DescriptionText = String

This key indicates the text which is displayed by default in the description area (when the
mouse is not over the menu item).

This key is optional. If this key is omitted, the description area only contains text during
menu mouseover activity.

Height = Number

This key indicates the height of the region. The value is in 96-DPI units.

Left = Number

This key indicates the position of the region, from the left margin of the window (excluding
the window border). The value is in 96-DPI units.

Top = Number

This key indicates the position of the region, from the top margin of the window (excluding
the window title). The value is in 96-DPI units.

Width = Number

This key indicates the width of the region. The value is in 96-DPI units.

[LinkFont] and [DescriptionFont]

These two sections respectively define the fonts to be used to display the menu item texts and the
mouseover information texts. The [DescriptionFont] section is optional and does not need to be
used if no mouseover information texts are used.

Keys:

Alignment = Left | Center | Right , Top | Middle | Bottom

This key indicates the horizontal and vertical alignment of the text within the rectangular
box defined by the [LinkArea] and [DescriptionArea] sections.

This key is optional. The default value is Left, Top.

CharacterSet = Number

For non-Unicode strings, this key determines the character set used to map the string bytes
to the actual characters in the font.

This key is optional. The default value is 0, meaning that the "ANSI" character set (Windows
1252, a variant of ISO-8859-1) is used.

DefaultColor = Red Value, Green Value, Blue Value

These three values represent the Red, Green and Blue components of the text color, in a
range from 0 to 255 (0, 0, 0 is black, 255, 255, 255 is white, 255, 255, 0 is yellow, etc.)

Height = Number

This key indicates the text size (em height, in 96-DPI pixel units).

Italic = Boolean

If this key is set to True, the text is displayed in italics.

This key is optional. The default value is False.

MouseoverColor = Red Value, Green Value, Blue Value

These three values represent the Red, Green and Blue components of the color of the
selected text (i.e. during mouseover), in a range from 0 to 255 (0, 0, 0 is black, 255, 255,
255 is white, 0, 255, 255 is cyan, etc.)

Reference

32

This key is optional. This key is only available in the [LinkFont] section (it is not used in the
[DescriptionFont] section).

MouseoverUnderline = Boolean

If this key is set to True, the text is displayed underlined when selected (i.e. during
mouseover).

This key is optional. The default value is False. This key is only available in the [LinkFont]
section (it is not used in the [DescriptionFont] section).

Name = Font Name, Font Name, Font Name, etc.

This key indicates one or more font names, in order of preference (e.g. "ITC Officina Sans
Book", "Verdana", "Arial"). If a font is not found on the system on which MenuBox is
running, the software tries to open the next font in the list. The last font name should
preferably refer to a font that is present on all versions of Windows, such as "Arial",
"Courier New", "Times New Roman", "Symbol", "Wingdings", "Marlett", "Small Fonts", "MS
Serif" and "MS Sans Serif". If no exact match is found, MenuBox opens a font using the
default system default fallback logic (which for example on newer versions of Windows
includes procedures which consider similarities in font names).

Underline = Boolean

If this key is set to True, the text is displayed underlined.

This key is optional. The default value is False.

Weight = Number

This key indicates the "weight" of the font. The following table lists the effect of various
weigh values on the font style.

Value Style

100 Thin

200 Extra Light

300 Light

400 Normal

500 Medium

600 Semi Bold

700 Bold

800 Extra Bold

900 Heavy

This key is optional. The default value is 400 (Normal font weight).

Width = Number

This key is combined with the Height key to indicate the font X:Y ratio. Characters may be
"stretched" by changing the value of Width.

This key is optional. The default value is 0, meaning that the default ratio for the font should
be used.

[Link]

This section defines the contents and behavior of individual menu items. Multiple [Link] sections
may appear in the same [TextWindow] context.

Keys:

AbsolutePath = Boolean

Reference

33

If this key is set to True, MenuBox inserts absolute path information at the beginning of the
string referenced by the Parameters key.

This key is described in more detail in the [Windowless] section.

Description = String

This key indicates the text which is displayed in the description area when the mouse is
moved over the menu item (e.g. "Opens an Explorer window showing the contents of the
CD").

This key is optional.

Directory = Path

This string indicates the directory which will become the current directory before processing
the File key. By default, the current directory is the directory containing the configuration
file.

This key is described in more detail in the [Windowless] section.

Exit = Boolean

If this key is set to True, MenuBox closes the window when the menu item is opened. In
practice, this functionality can be used both to close the MenuBox window and to close the
current menu level while a new level is being loaded by a different instance of MenuBox
referencing a different configuration file.

This key is optional. The default value is False.

File = File Name

This key indicates the name of the executable or document file to be opened. It is most
frequently either used alone or in combination with a path set via the Directory key.

The key is described in more detail in the [Windowless] section.

Parameters = String

This string indicates a set of one or more parameters (e.g. a file name, or command line
options) which is passed to the executable referenced by the File key.

This key is described in more detail in the [Windowless] section.

Show = Normal | Minimized | Maximized | Custom String or Numerical ID

This key indicates how the application referenced by the File key should be opened
(minimized window, maximized window, etc.) The default behavior is always "Normal".

This key is described in more detail in the [Windowless] section.

Text = String

This key indicates the menu text (e.g. "Browse CD"), which is displayed in the menu area.

UnLoadEffects = Boolean

This key determines whether the effects referenced by the OnUnloadSound and
OnUnloadFade keys of the [TextWindow] section are enabled. If set to False, MenuBox exits
without sound or visual transition effects, which may be useful when switching between
menu levels.

This key is optional, and can only be used in combination with Exit. The default value is
True.

Verb = Open | Edit | Explore | Print | Properties | Custom String

This key indicates the action to be performed, e.g. "edit", "explore", "print", "properties",
etc. The default action is application-specific, and for most application and document types
it is "open".

This key is described in more detail in the [Windowless] section.

Reference

34

Related Topics
For more information on Windows character set codes, see Windows Character Set Codes.

For an introduction to using templates to build suitable configuration files, see The MenuBox
Wizard.

For practical examples, see Web Resources.

3.5 HTML Window Mode

Overview

In HTML window mode MenuBox functions as a browser container capable of rendering HTML and
other web content. This functionality requires Windows 98 or higher, or Windows 95 or Windows
NT 4.0 with at least Internet Explorer 3 (released in August 1996 and included with Windows 95 v.
950b, also known as OEM Service Release 2) installed. MenuBox can render the content either in
a window or in full screen, and includes special kiosk mode features such as automatic content
reset after a period of inactivity and the disabling of mouse text selection and context menus (e.g.
View Source, Properties, etc.)

The MenuBox HTML window mode does not require Internet Explorer to be the default browser on
the system on which MenuBox is running. A condition can be created using the MenuBoxBrowser
key in the [ApplicationCheck] section so that if the computer does not have the required browser
functionality (Basic or Advanced) a fallback action is initiated (e.g. installing Internet Explorer
software from the same CD, opening MenuBox in text window mode, displaying a message, etc.)

DPI Scaling

On high-DPI displays (more than 96 DPI), HTML window mode content can either be automatically
scaled by MenuBox, or be custom-rendered by DPI-aware HTML content, as selected by the
DPIAware key. The window Width and Height arguments are always expressed at the canonical
96-DPI units.

[HTMLWindow]

A single, optional [HTMLWindow] section may appear anywhere in the MenuBox configuration file.
If the [Windowless] section is also present, [Windowless] is always executed first, before a
window is opened. If one or more [ApplicationCheck] sections are present, then the
[HTMLWindow] section is processed only if no [ApplicationCheck] section has disabled the
[HTMLWindow] section as a result of its ProceedSuccess or ProceedFailure keys. Although it would
in most cases not be practical to open both a text window and an HTML window, if both
[TextWindow] and [HTMLWindow] exist in the same configuration file and remain enabled
following all [ApplicationCheck] conditions, then the text window is opened first and the HTML

Reference

35

window is opened after the first window has been closed.

Keys:

AlwaysOnTop = Boolean

This option ensures that the MenuBox window is always displayed on top of other windows.
In full screen mode this effectively hides all other windows, even if opened by user action
or by system events occurring after the launch of MenuBox.

This key is optional.

Borderless = Boolean

If this key is set to True, the window is opened without title bar or borders. Since such a
window has no close button it is important to include an appropriate menubox_close() or
window.external.close() link to the page content in order to close the window.

This key is optional.

ContextMenuDefault = Boolean

If this key is set to True, the default browser menu is enabled. The default value is False
(no browser context menu).

This key is optional.

ContextMenuText = Boolean

If this key is set to True, selection of text in the HTML browser window is possible, and text-
related context menus are enabled. The default value is False (no text selection and no
context menus).

This key is optional.

DisableNavigationSound = Boolean

If this key is set to True, system navigation sounds are always suppressed. This disables
optional effects such as hyperlink clicks. The default value is False (sounds are enabled or
disabled depending on the system settings).

This key is optional.

DPIAware = Boolean

If this key is set to True, no automatic scaling is performed on the HTML content. DPI-aware
content can query the screen.deviceXDPI and screen.deviceYDPI DOM properties to obtain
information about the current display. Unlike a web browser, the zoom value is always
100%.

If the key is set to False (default), then the content is assumed to be at 96-DPI, and
automatically scaled accordingly on higher-density displays.

This key is optional.

FullScreen = Boolean

If this key is set to True, the window is opened in full screen (ignoring the Width and Height
keys).

This key does not make the window resizable. To open a resizable maximized window with
borders, use the Resizable and Show options instead, in which case the Width and Height
keys can be set to define the "normal" window size. With the FullScreen option, the
"normal" window size is the size of the full screen.

This key is optional, and is usually combined with the Borderless key.

Height = Number

This number indicates the height of the window, excluding the title bar and borders, but
including an optional horizontal scroll bar. Regardless of the DPIAware key setting, the

Reference

36

value is always expressed in 96-DPI pixels.

This key is not required if the FullScreen key is enabled.

Icon = File Name

This key indicates the file name of the icon, in Windows icon format (ICO), used in the
window title, on the toolbar when the software is in use or minimized, as well as in the ALT
+TAB selection window.

This key is optional. If no icon file is provided, the built-in default icon is used.

KioskReset = Seconds

This key indicates after how many seconds of keyboard and mouse inactivity MenuBox will
reset its content and again open the "homepage" referenced by the URL key.

This key is optional, and recommended for environments where MenuBox is run in kiosk
mode (e.g. in full screen with a touch screen instead of a mouse, no keyboard, etc.), so
that new visitors see the intended introductory page rather than the last page visited by the
previous user. The default value of 0 means that MenuBox never resets its content.

NoExecute = Boolean

If MenuBox is used in a kiosk-like environment with general access to untrusted internet
sites, it is recommended to disable the Execute functionality provided by the MenuBox
Extended DOM. The NoExecute key makes it possible to deny use of the Execute
functionality.

This key is optional.

NoFiles = Boolean

If MenuBox is used in a kiosk-like environment with general access to untrusted internet
sites, it may become desirable to disable all files access functionality provided by the
MenuBox Extended DOM. Although file access is limited to the publisher-specific sandbox,
malicious use may result in wasteful file writes. The NoFiles key makes it possible to deny
use of the ReadFile and WriteFile functionality.

This key is optional.

NoRegistry = Boolean

If MenuBox is used in a kiosk-like environment with general access to untrusted internet
sites, it may become desirable to disable all registry access functionality provided by the
MenuBox Extended DOM. The NoRegistry key makes it possible to deny use of the GetNV,
SetNV and GetRegistry functionality.

This key is optional.

OnLoadFade = Milliseconds, From Value, To Value

This key defines the duration, initial translucency and final translucency of the transition
effect applied when the window is opened. In the translucency values 0 indicates complete
transparency, and 100 complete opacity. If the final translucency value is smaller than 100
the window remains in a partially translucent state.

Not all versions of Windows support translucency. Where translucency is not supported
MenuBox opens the window normally, without transition effect. The introduction of transition
effects causes the MenuBox window to open in layered mode. With some display cards and
drivers, this may affect the quality of video playback inside the window.

This key is optional. By default the window appears normally (no fade-in effect). If a single
value is set in this key, the fade effect defaults from 0 to 100.

OnUnloadFade = Milliseconds, From Value, To Value

This key defines the duration, initial translucency and final translucency of the transition
effect applied when the window is closed. In the translucency values 0 indicates complete
transparency, and 100 complete opacity. To avoid any undesired flickering, the initial
translucency value should be the same as the final translucency of the OnLoadFade effect.

Reference

37

Not all versions of Windows support translucency. Where translucency is not supported
MenuBox closes the window normally, without transition effect. The introduction of transition
effects causes the MenuBox window to open in layered mode. With some display cards and
drivers, this may affect the quality of video playback inside the window.

This key is optional. By default the window is closed normally (no fade-out effect). If a
single value is set in this key, the fade effect defaults from 100 to 0.

OpenOnlyOnce = Boolean

If this key is set to True, multiple instances of the same MenuBox project will open or
reopen only one window. By default, MenuBox opens a new window each time it is invoked,
even if it is executed with reference to the same MenuBox executable and configuration file.
This may result in multiple identical windows being opened at the same time, for example
when the same AutoRun-enabled medium is repeatedly inserted and ejected. which may or
may not be desirable. If you use the UniqueID key to assign a unique identifier (e.g. a
sequence number, a product-unique string, etc.) to a configuration file, and you set the
OpenOnlyOnce key, then multiple instances of the same MenuBox executable which refer to
a configuration file with the same UniqueID will cause the first MenuBox window to be
brought to the front, instead of new windows being opened.

This key is optional. In order to exclude conflicts with other publishers, the software must
be registered and a project-specific UniqueID key must be set.

RememberPosition = Boolean

If this key is set to True, MenuBox will remember the position and size of the window when
the same project is opened again. This information is stored in the user registry, within an
exclusive namespace defined by the publisher registration and the UniqueID key.

This key is optional. In order to exclude conflicts with other publishers, the software must
be registered and a project-specific UniqueID key must be set.

Resizable = Boolean

If this option is set, the window can be resized by the user.

A resizable window can also be opened maximized by setting the Show option accordingly.
A non-resizable window can only be opened "maximized" by setting the FullScreen option
(instead of setting the initial Width and Height values).

This key is optional, and is usually combined with the ScrollBars key. By default the window
is not resizable.

ScrollBars = Boolean

If this key is set to True, the window is opened with horizontal and/or vertical scroll bars (as
may be required by the window content). If the window content fits entirely within the
window, no scroll bars are added. The default value is False (no scroll bars). If you need
more detailed control over frames and parts of frames, set ScrollBars to True in MenuBox,
and control the scroll bars in HTML, e.g. use the overflow (CSS) and scroll (Microsoft)
properties for the BODY element, and the scrolling attribute for FRAME and IFRAME
elements.

This key is optional.

Show = Normal | Minimized | Maximized

This key indicates how the window should be opened. The Maximized option is ignored if the
window does not also have the Resizeable option enabled.

This key is optional. The default behavior is to open a normal window.

Title = String

This key indicates the window title text. The same text is also used on the toolbar when
MenuBox is in use or minimized.

This key is optional.

URL = URL

Reference

38

This is the first HTML file which MenuBox processes when it is launched. It may be a simple
file name (e.g. "index.html"), a path and file name (e.g. "..\docs\index.html"), or a network
address (e.g. "https://example.com/index.html"). MenuBox automatically canonicalizes the
URL string, so that for example the "file://" prefix for file URLs is optional. Both slash ("/")
and backslash ("\") characters may be used as file system path separators. The URL
specified by this key is also reopened following a "Homepage" event (e.g. triggered by the
corresponding key on certain "internet keyboards"), and as set with the KioskReset key.

Width = Number

This number indicates the width of the window, excluding borders, but including an optional
vertical scroll bar. Regardless of the DPIAware key setting, the value is always expressed
in 96-DPI pixels.

This key is not required if the FullScreen key is enabled.

Differences between File System and Web Server

MenuBox HTML window mode is often used to browse through CD-based content. In this scenario
the HTML documents and the other objects are read from a local file system (CD, DVD, hard disk,
etc.) rather than from a web server, requiring special attention to aspects which include:

The default document ("index.html", "default.htm", etc.) of a directory, which may be omitted
when referencing the default page of a directory on a web server, must be explicitly referenced
when the same link points to a location on a file system (e.g. use "holidaypics/index.html"
instead of "holidaypics/")

Server-based code (e.g. CGI, PHP and ASP) is not processed when running from a file system
(i.e. without a web server to execute the code)

Relative paths and links (e.g. "images\mypicture.jpg" or "images/mypicture.jpg" instead of "D:
\images\mypicture.jpg" or "https://example.com/images/mypicture.jpg"), rather than absolute
paths or URLs, should be used to link local content (i.e. files stored on the same CD, DVD,
computer, etc.)

Absolute URLs, rather than relative paths and links, should be used to link from the file system
to pages stored on the internet (e.g. "https://example.com/mywebcam/" instead of "../
mywebcam/")

You do normally not need to worry about:

Client-based code (e.g. ActiveX, Java and JavaScript), which works fine when run from the file
system, as long as the appropriate viewers/players/plug-ins are available (they can be installed
from the file system just like they can be installed from the internet)

Slash ("/") characters in paths, which are automatically mapped to Windows backslash ("\")
characters when necessary

File and directory names (short "8.3" file names should be a thing of the past even on CDs)

Download times and size of images, videos and other multimedia items (everything is almost
instantly available from the local file system, allowing for richer content compared to most
online projects)

Additional Design Considerations

MenuBox HTML windows are often designed to look more like application windows than web
pages. In these cases, you may also want to consider the following:

Font sizes should be expressed in pixels (rather than points, percent values, etc.) to guarantee
accurate positioning and sizes on a variety of systems and user settings. You can use the
following formula to convert between font size units: px = pt+33%. Using Cascading Style
Sheets (CSS) to specify font sizes in pixels provides a good method for creating reliably
uniform font sizes.

When linking to other pages, especially web content, decide whether such items should be
displayed inside the same MenuBox window or inside a new web browser window (handled by
whatever the default web browser is) instead. In the latter case, be sure to reference links
using the target="_blank" option (e.g. Target Frame... New Window option in some authoring
tools).

Reference

39

Related Topics

For more information on the MenuBox Extended Document Object Model, see The MenuBox
Extended DOM.

For more information about paths and directories, see Paths and Current Directory.

For an introduction to using templates to build suitable configuration files, see The MenuBox
Wizard.

For practical examples, see Web Resources.

3.6 The MenuBox Extended DOM

Overview

In addition to providing full browser functionality (referred to as "Basic" browser functionality),
MenuBox extends the standard browser Document Object Model (DOM) by adding properties and
methods which make it possible to open documents, launch applications and quit MenuBox with
the same ease and administrative privileges (i.e. without browser-typical confirmation and
warning messages) as any other trusted application. More in general, these features allow you to
use HTML code to build a project that looks and feels to the user more like a full Windows
application than an HTML page. This functionality (which is referred to as "Advanced") requires
Windows 98 or higher, or Windows 95 or Windows NT 4.0 with at least Internet Explorer 4
(released in September 1997) installed. Code for object detection and fallback under Internet
Explorer 3 is also provided.

Extended Document Object Model Reference

In order to overcome the limitations of normal browser containers, MenuBox extends the
Dynamic HTML Document Object Model (DOM) so that scripts can access the same document
opening and code execution functionality already known from the MenuBox command line,
windowless and text window modes. Such scripts refer to the host by specifying the External
object that is available from the Window object. For example, a reference to
"window.external.menuboxversion" will call MenuBox to resolve the name "menuboxversion" and
return the program version number. All standard script within the HTML document will be
executed normally, without being affected by the additional functionality provided by MenuBox.

Methods:

Sub Close()

Closes the MenuBox window.

Sub Execute(File As String, Parameters As String, Directory As String, Verb As String, Show As
String, AbsolutePath As Boolean, Wait As Boolean, Exit As Boolean)

Opens a document or executes a file. Paths used by this function are relative to the
directory containing the HTML file referenced by the URL key (the first HTML document
which is opened), rather than the directory containing the current HTML document, if
different. Within an HTML scripting environment, remember to use the applicable escape
sequences for any special characters which may be contained in the function arguments
(e.g. "\" should become "\\", and double quotes inside HTML double-quoted parameters
should be transformed to single quotes, or vice versa).

The documentation of the corresponding keys as they are used in the [Windowless] section
of the configuration file includes a more detailed description of each option. Setting the Exit
argument to true closes the MenuBox window after completion, and is equivalent to
invoking Close().

This function can be disabled (e.g. for security considerations when opening pages in
unknown and untrusted internet sites) by setting the NoExecute key.

Function Exists(File As String) As Boolean

Indicates whether a file exists. No warning or error messages are displayed to the user if

Reference

40

the file does not exist, or if the medium (if an absolute path is specified) is not available.
Paths used by this function are relative to the directory containing the HTML file referenced
by the URL key (the first HTML document which is opened), rather than the directory
containing the current HTML document, if different.

Within an HTML scripting environment, remember to use the applicable escape sequences
for any special characters which may be contained in the File argument (e.g. "\" should
become "\\").

Function ExpandPath(Path As String) As String

Returns the full absolute path, given a relative path or an environment variable. The
resulting path is guaranteed to terminate with a backslash character. The Path string is
returned unmodified if it cannot be expanded to a valid path.

Within an HTML scripting environment, remember to use the applicable escape sequences
for any special characters which may be contained in the Path argument (e.g. "\" should
become "\\").

Function FindDrive(Path As String, Message As String) As String

Looks for a drive containing the specified path and file (e.g. "MenuBox\MyCDIdentifier.txt"),
prompting the user with a custom message (e.g. "Please insert MyCD in any drive.") to
insert the medium if necessary. If the path string ends with :\" (e.g. "MyCD:\") then
MenuBox looks for a volume with the specified label (name).

The function either returns the path (drive letter inclusive of trailing backslash, e.g. "D:\")
of the first drive containing a matching medium, or a null string, if the medium was not
found. If no Message parameter is provided, the function fails without prompt if the medium
is not mounted.

For performance reasons, FindDrive does not attempt to scan floppy drives.

Function GetNV(VariableName As String) As String

Returns the value of a MenuBox nonvolatile variable. A null string is returned if the value is
not set.

This function can be disabled (e.g. for security considerations when opening pages in
unknown and untrusted internet sites) by setting the NoRegistry key.

Function GetRegistry(RegistryKey As String, RegistryValue As String) As String

Returns the specified registry value, or indicates whether a key exists. A null string is
returned if the key or value is not found. The RegistryValue parameter is optional. If it is
not provided or left empty, MenuBox returns "1" to indicate that the specificed key exists,
or a null string to indicate that it was not found.

When a binary value is queried, MenuBox returns a string of space-separated hex values
(e.g. "00 01 02 fc fd fe ff").

When a multi-string value is queried, MenuBox returns an array object (having a lower
bound of 1). The following JavaScript example illustrates how to access such an object.

var ret = menubox_getregistry('HKEY_CURRENT_USER\\SOFTWARE\\Example',
'Test');
if (typeof(ret) == "string")
{
 menubox_message("MenuBox Example",ret);
}
else
{
 for (var i = ret.lbound(); i <= ret.ubound(); i++)
 menubox_message("MenuBox Example",ret.getItem(i));
}

On x64 systems the Registry Redirector isolates 32-bit and 64-bit applications by providing
separate logical views of certain registry keys. In this case, MenuBox looks up first the x64
key, and then, if no x64 key was found, the corresponding x86 key. To override this
behavior the RegistryKey parameter can be prefixed with "x86\" or "x64\", in which case
MenuBox only searches the specified branch.

Reference

41

Within an HTML scripting environment, remember to use the applicable escape sequences
for any special characters which may be contained in the RegistryKey argument (e.g. "\"
should become "\\", as in "X86\\HKEY_LOCAL_MACHINE\\SOFTWARE\\Publisher\
\Application\\1.0").

This function can be disabled (e.g. for security considerations when opening pages in
unknown and untrusted internet sites) by setting the NoRegistry key.

Sub Maximize()

Maximizes the window.

Function Message(Title As String, Message As String, Type As Long) As Long

Displays a message dialog with the desired title and message content. The "\n" escape
sequence can be used to force new lines in the text.

By default, a simple system message dialog with an "OK" button is displayed. The optional
Type argument can be set to change the type of dialog, using the same numeric values as
in the Windows system MessageBox() function (0 = "OK", 1 = "OK" and "Cancel", 2 = "OK",
"Retry" and "Ignore", 3 = "Yes", "No" and "Cancel", 4 = "Yes" and "No", 5 = "Retry" and
"Cancel", etc.), which can be combined (ORed) with additional flags to set specific warning
or error symbols, Help options, etc.

The return value is the same as documented for the Windows system MessageBox()
function (1 = OK, 2 = Cancel, 3 = Abort, 4 = Retry, 5 = Ignore, 6 = Yes, 7 = No, 8 =
Close, etc.)

If no Title string is provided, MenuBox displays the message in a small "always on top"
window, suitable for example for displaying initialization progress information. This type of
window has to be closed explicitly, by invoking the Message() function with an empty
Message string.

Sub Minimize()

Minimizes the window.

Sub Move(XPos As Long, YPos As Long, Width As Long, Height As Long)

Moves the window to a given screen position (starting from the 0:0 coordinate
corresponding to the top left of the primary display). The Width and Height arguments are
optional, and allow to set the position and size of the window in a single step.

Sub PlaySound(File As String, Wait As Boolean)

Plays a sound file in Windows wave format (WAV). For maximum compatibility with older
versions of Windows (including Windows 95), WAV sound files should be saved using either
the Windows PCM (uncompressed pulse code modulation) codec or the Microsoft ADPCM
(slightly lossy 4:1 compression) codec. This method does normally not interrupt any
previously-playing sound. In order to interrupt a sound the method must be invoked with an
empty file name, after which the method can be invoked again to play a new sound. If the
Wait argument is true, the function returns only after the sound file has been played to its
end. The default value is False (the function returns immediately).

Function ReadFile(FileName As String) As String

Returns the content of a MenuBox data file, as written by WriteFile. A null string is returned
if the file does not exist.

Only the file name, not the directory name, can be set. The directory is always the
"sandboxed" publisher-specific directory under a per-user directory reserved for MenuBox
data storage.

This function can be disabled (e.g. for security considerations when opening pages in
unknown and untrusted internet sites) by setting the NoFiles key.

Sub Restore()

Restores the window (which may be in a minimized or maximized state) to its default open
size.

Sub SetNV(VariableName As String, Value As String)

Reference

42

Defines a MenuBox nonvolatile variable within the publisher's namespace, if not already
defined, and sets its value. The variable is stored in the system registry for the current user
and is persistent across reboots. The variable can be read with the GetNV method.

The maximum length of a nonvolatile variable name is 254 characters. Quote, slash and
backslash characters are not allowed (if used, """, "/", "\" and ":" are converted to
underscore characters). The maximum size of the value is 2048 characters.

If the value is set to a null string, then the nonvolatile MenuBox variable, if it existed, is
deleted. Once the last variable set by a publisher is deleted, the entire registry key
containing it is also deleted with it, restoring the user's registry to a "clean" state, i.e. as it
was before the first variable was set.

This function can be disabled (e.g. for security considerations when opening pages in
unknown and untrusted internet sites) by setting the NoRegistry key.

Sub Size(Width As Long, Height As Long)

Sets the window size.

Sub WriteFile(FileName As String, Data As String)

Writes a file within a publisher-specific directory under a per-user directory reserved for
MenuBox data storage. This directory is "sandboxed", and cannot be set in the file name.
The file can be read with the ReadFile method.

The maximum length of the file name is 254 characters. Quote, slash and backslash
characters are not allowed (if used, """, "/", "\" and ":" are converted to underscore
characters). The maximum file size is 2 GB.

If the data is set to a null string, then the file, if it existed, is deleted. Once the last file set
by a publisher is deleted, the entire publisher data directory containing it is also deleted
with it, restoring the user's file system to a "clean" state, i.e. as it was before the first file
was written to.

At the Windows file level, the string is written as a UTF-16 text stream. To store binary data,
use an encoding like Base64.

This function can be disabled (e.g. for security considerations when opening pages in
unknown and untrusted internet sites) by setting the NoFiles key.

Properties:

Property Architecture As String

Returns the architecture of the host operating system, i.e. "x86" or "x64".

Property Language As String

Returns a two-letter language code string as per ISO 639-1 (e.g. "en" for English, "de" for
German, "es" for Spanish, "fr" for French, "it" for Italian, etc.) indicating the current user
locale. If the current user locale is unknown, "en" is returned.

Property Medium As Long

Returns a single integer value indicating the type of medium from which MenuBox is
running. Possible values are 0 (medium type cannot be determined), 1 (error determining
medium type), 2 (removable media, e.g. floppy disk or removable hard disk), 3 (non-
removable disk), 4 (network drive), 5 (CD or DVD) and 6 (RAM disk).

Property MenuBoxVersion As Long

Returns a single integer value consisting of the major program version number multiplied
by 100, plus the minor version number (which is always in the range from 0 to 99). For
example, version "2.0" (the first version implementing the MenuBox Extended DOM) is
returned as 200. Version 12.34 would return a value of 1234, etc.

Property Title As String

Gets or sets the title of the MenuBox browser container window.

Reference

43

Playing Safe: Object Detection and Fallback

The functionality provided by the MenuBox Extended DOM is only available on Windows 98 or
higher, or if Internet Explorer 4 or higher was installed on older systems. Invoking functions such
as window.external.close() from Windows 95 or Windows NT 4.0 with Internet Explorer 3 will
result in a script error (earlier versions of Internet Explorer were neither widespread nor did they
support scripting). This can be avoided either by using object detection code as shown below, or
by using the MenuBoxBrowser key in the [ApplicationCheck] section to verify that Advanced
functionality is supported.

MenuBox includes a redistributable JavaScript (also referred to as ECMAScript and JScript) file
named menubox.js, which defines a set of intermediate JavaScript functions which invoke the
corresponding MenuBox functions only if the MenuBox Extended DOM is available. The
menubox.js JavaScript file should be referenced by means of a SCRIPT element inside the HEAD
element of an HTML document.

<head>
...
<script language="JavaScript" type="text/javascript" src="menubox.js"></script>
</head>

The intermediate JavaScript functions, such as menubox_close(), can safely be used instead of
window.external.close(), regardless of operating system and browser version. In the worst case,
i.e. if the MenuBox Extended DOM is unavailable, the script invokes similar functionality, which
however usually requires user confirmation before a window is closed or a file is executed or
saved (e.g. "The Web page you are viewing is trying to close the window. Do you want to close
this window?" and "Would you like to open the file or save it to your computer?").

The JavaScript code has been tested not only in MenuBox (on systems with Internet Explorer 3
and higher), but also with different versions of Internet Explorer and other web browsers. Some
versions of the Microsoft FrontPage Preview mode browser have a known problem with object
detection code, and may display a script error message (which does not otherwise affect
document editing or preview).

Security Considerations

The MenuBox Extended DOM allows HTML code to perform certain actions that are normally
reserved to binary applications (such as, for example, non-HTML AutoRun tools). Whereas this
does not introduce any new security implications when running in a local context (e.g. CD or DVD
AutoRun), this is normally considered "dangerous" when running in an untrusted internet context
(e.g. MenuBox used to operate a kiosk with general internet access).

The MenuBox Extended DOM inherits and is bound by the security privileges of the MenuBox
application itself. More specifically, because the MenuBox redistributable runtime code is digitally
signed with Microsoft Authenticode technology, MenuBox is bound by the policies which apply to
signed applications.

When a user and/or an administrative policy allow the MenuBox executable to run (from a CD or
DVD, or after software installation, etc.), that implies that MenuBox has been trusted and
authorized to act as a menu-like front-end for opening certain known documents and programs.
This is perfectly fine, and would apply in exactly the same way to any installed or AutoRun-
launched application. Because normal web browsers were designed to protect the user from
executing unknown and potentially malicious code in an unknown internet environment, rather
than being deployed in a controlled distribution, much of the "trusted" functionality is normally not
accessible to Dynamic HTML content, which is not even allowed to close the browser window
without a warning message being displayed to the user (not to mention running an executable
file). When operating in this context, the MenuBox Extended DOM provides a useful extension to
the functionality which is normally accessible to HTML code, allowing the browser container to
operate like a binary application, without introducing new security risks compared to other
applications.

The GetRegistry method of the MenuBox Extended DOM gives read-only access to registry keys
and values, with functionality being limited to checking whether a key exists and to read an
existing value. In consideration of possible security concerns, MenuBox offers no functionality to
write to an arbitrary registry location.

The GetNV and SetNV methods of the MenuBox Extended DOM provide read/write access to

Reference

44

nonvolatile variables. This information is stored in the current user's registry, inside a publisher-
specific subkey (a publisher is a MenuBox licensee with a unique software license key) stored
inside a MenuBox-specific key (effectively, a sandbox). In consideration of possible security
concerns, the name of the variables is both normalized (""", "/", "\" and ":" are converted to
underscore characters) and truncated after 254 characters to help prevent potential buffer
overrun, key traversal and other exploits. A maximum size of 2048 bytes is enforced for all
values. As is the case with public Windows registry key, any application that can read or write to
the system registry can access or modify these variables, which are simple and accessible by
design.

The ReadFile and WriteFile methods of the MenuBox Extended DOM provide read/write access to
private files stored inside a publisher-specific data directory (a publisher is a MenuBox licensee
with a unique software license key) stored inside a MenuBox-specific per-user (roaming) data
storage directory. The ReadFile and WriteFile methods do not allow access outside of this
sandbox. In consideration of possible security concerns, the name of the file names is both
normalized (""", "/", "\" and ":" are converted to underscore characters) and truncated after 254
characters to help prevent potential buffer overrun, directory traversal and other exploits.

If MenuBox is used to operate a kiosk-like environment with general access to untrusted internet
sites, then it would in theory be possible, for example, for a malicious person to access the kiosk
and deliberately open an internet page containing malicious code, and execute that code via the
MenuBox Execute function. On newer versions of Windows (Windows XP SP1 and higher) this
attempted execution of code originating from the internet would in turn trigger the display of a
warning message. When operating in such an untrusted context it is in general recommended to
disable such functionality by setting the MenuBox NoExecute key. It would in theory also be
possible to use the SetNV function to write a large number of nonvolatile variables, with the
potential to fill up the registry. This can be prevented by setting the NoRegistry key, which at the
same time also blocks all registry access, including the read-only access provided by the
GetRegistry method. Similarly, a wasteful use of file writes can be prevented by setting the
NoFiles key.

Related Topics

For more information about paths and directories, see Paths and Current Directory.

For an introduction to using templates to build suitable configuration files, see The MenuBox
Wizard.

For practical examples, see Web Resources.

3.7 Paths and Current Directory

Overview

After MenuBox has been launched from its own executable file ("menubox.exe", which may be
renamed, if so desired) it needs to access one or more additional files (e.g. configuration files,
documents to be displayed and executable files to be launched). Documents opened by MenuBox
may in turn also contain links to other files. The following sections explain how to make sure that
all files and other links references directly or indirectly by MenuBox will work flawlessly in a
variety of configurations.

Relative vs. Absolute Paths

Paths would not be necessary if all files were located in the same directory, and if that directory
were the current directory. When directories (or different drives, or computers, locally or on a
network) are used to group content, paths indicate how to find files located in different locations.
MenuBox supports different types of path formats in its command line and configuration file
options, including:

Relative paths

e.g. "Directory\File", "Directory\Directory2\File", etc.

Absolute paths

e.g. "DriveLetter:\Directory\File, "DriveLetter:\Directory\Directory2\File", etc.

Reference

45

Paths containing environment variables

e.g. "%temp%\Directory\File, "%temp%\Directory\Directory2\File", etc.

UNC paths

e.g. "\\Server\ShareOrDrive\Directory\File", "\\Server\ShareOrDrive\Directory
\Directory2File", etc.

Internet absolute paths

e.g. "https://Server/Directory/File", "ftp://Server/Directory/Directory2/File", etc.

Internet relative paths

e.g. "Directory/File", "Directory/Directory2/File", etc.

Paths within HTML scripts

e.g. "javascript:menubox_execute('Directory\\setup.exe')"

Absolute paths always begin with an absolute reference to a drive, device or server. While
absolute paths may be useful when pointing to documents on the internet, we recommend to only
use relative paths when referencing files on removable media such as CDs and DVDs. As
different computer configurations use different drive letters (e.g. "D:\", "E:\", etc. for CD/DVD
drives), absolute paths which include drive letters are guaranteed to fail as soon as the medium
containing the application is used on a computer where the letters are assigned differently than on
the test machine.

Relative paths are relative to the current directory, and may begin with one or more optional ".."
parts, each meaning "up one level". For example, if MenuBox is running from inside the "AutoRun
\Software" directory on a CD, and you need to reference an HTML file named "index.html" located
in "Docs\HTML", you would reference that file as "..\..\Docs\HTML\index.html".

Keep in mind that space characters are not allowed within paths referenced in "autorun.inf".

A few rare and usually older applications do not support relative paths in their command line
arguments. If you need to use such a program, for example a specific document viewer, either
place the viewer and the document in the same directory as the configuration file ("menubox.ini"),
or use the /d and/or /a command line options or the corresponding Directory and AbsolutePath
configuration file keys to set the appropriate current directory and/or let MenuBox convert the
relative path to an absolute path.

When using MenuBox to open Microsoft Office documents (e.g. PowerPoint, Excel, Access, etc.)
which in turn link to other files which are also distributed with the linking document, be sure to
enable the "Use relative path for hyperlink" option in the Office software before saving the
document. For maximum compatibility with various document viewers it is recommended that you
group all such linked files in a single directory, and that you set that directory to be the current
directory with the appropriate MenuBox option (see below). You don't need to worry about this if
the document is self-contained and does not contain references to other files.

If in doubt, remember to test all links of your final project, and then test again from a different
drive (i.e. one where your project will be mounted under a different drive letter), preferably on a
different computer (to also make sure that the links are not referencing some file which only
exists on the hard disk where the project was created, e.g. you don't want to test a CD-ROM
master on drives "D:\" and "E:\", only to later find out that the links were working only because
they contained absolute references to something on your own "C:\" hard disk partition).

Within an HTML scripting environment, remember to use the applicable escape sequences for any
special characters which may be contained in the File argument (e.g. "\" should become "\\").

Environment Variables

MenuBox automatically expands environment variables (e.g. "%name%") in paths to the full
absolute path before further processing. This occurs at all levels (command line parameters,
configuration file options, Windowless mode, and Extended DOM functionality). This allows a
MenuBox application to locate and reference, for example, an installed application.

For maximum compatibility across different versions of Windows, and in consideration of the fact
that paths stored in environment variables do not consistently end with or without a backslash
character, multiple consecutive backslash characters that may be present in the final (expanded)

Reference

46

path are automatically converted to a single backslash character.

Current Directory

Relative paths and files referenced directly (without path), are always relative to the current
directory. The following cases may apply depending on the application.

The default current directory for command line mode is inherited from the context in which the
MenuBox executable file is launched. For AutoRun applications this is the root of the medium.
The /d command line option can be used to explicitly set the current directory.

As soon as a configuration file (e.g. "menubox.ini") has been opened, the directory containing
that file becomes the current directory. All files referenced from a configuration file are relative
to this directory (unless a different directory is explicitly set via the Directory key).

If MenuBox does not find a configuration file, it searches to see if an "autorun.inf" file exists,
containing a [MenuBox] section with a Directory key. If that key is present, the current
directory is set to the specified path. MenuBox then proceeds to open the configuration file in
that new directory.

Once an HTML file has been opened, all relative links inside the HTML document are relative to
the location of the HTML file containing the link, regardless of the current directory (this
behavior is implemented by web browsers, based on HTML specifications).

Relative links contained in types of documents other than HTML (e.g. PowerPoint) are usually
relative to the current directory, so care should be taken to set the appropriate directory to be
the current directory (using the /d command line option or the Directory key of the
configuration file) if necessary when opening such a document.

If the MenuBox Execute() method is used from inside an HTML document (HTML window mode),
that always operates relative to the directory containing the first HTML file (i.e. the file
referenced by the URL key of the [HTMLWindow] section). This is because the MenuBox
document object model is initialized when this first file is opened, and it does not reflect the
directory of subsequent HTML files which may be opened during the browser session.

The default location of the configuration file, if not explicitly set using the /m command line option
or in the "autorun.inf" file, is the directory containing the MenuBox executable file. This means
that in most cases, as far as configuration files are concerned, the current directory will be the
directory containing the MenuBox executable file (e.g. "menubox.exe").

If you understand how the current directory works, and if you group files properly with respect to
each other in your distribution, you normally won't need to explicitly set or change directories. If
however your needs are slightly more demanding, remember that the Directory and AbsolutePath
keys, as well as the equivalent command line options, were designed to help you cover even the
most exotic path and compatibility issues.

Related Topics

For more information about using directories on AutoRun-enabled media, see AutoRun CDs and
DVDs.

3.8 AutoRun CDs and DVDs

Overview

AutoRun is a feature of the Microsoft Windows operating system which makes it possible to
automatically run a program (e.g. a menu window, a setup procedure, etc.) when a medium is
inserted in the drive. Originally designed to launch CD-based applications, AutoRun also works on
DVDs and other media. Support for AutoRun is a requirement of "Windows Logo" programs since
Windows 95. MenuBox can not only be used as the application which opens a menu when the
medium is inserted in the drive, but it also extends the original AutoRun specification (which
covers the running of programs, not the opening of specific documents) by allowing non-program
files such as HTML, PDF, PowerPoint, etc. to be automatically opened when the medium is inserted
in the drive.

Reference

47

Autorun.inf

When a medium is inserted in an AutoRun-enabled drive, the system looks for a file named
"autorun.inf", which has to be stored at the root of the medium (i.e. it cannot be inside a
directory). This is a Windows feature unrelated to MenuBox, although a reference to the MenuBox
directory can be placed inside this file. The file is structured following a simplified INI file format
(the same format used by MenuBox for its own configuration files). Most AutoRun-related needs
are fully covered by setting just one or two keys (Open and Icon) in the [AutoRun] section of the
"autorun.inf" file, which can be edited with a simple program like Notepad.

The Open and Icon keys work on all versions of Windows (Windows 95 and higher). The leading
path information and the trailing command line options in the Open key are optional. If you use
the Icon key we recommend that, for best results, you make sure that the icon file contains
images in at least the most popular formats (ready for use on different display resolutions and
icon size settings), which are 16x16, 32x32 and 48x48 pixels. A larger additional 256x256 format
was introduced in Windows Vista. If you also add the 256x256 format, be sure to test the result
on your intended target operating system versions.

The AutoRun specification covers additional features (e.g. support for different CPU platforms,
drive label and shortcut menus, handling of removable devices, installation of drivers, event
handlers, multimedia content directories, etc.) which in part require a specific minimum version of
Windows (e.g. Windows XP, Windows for Automotive, etc.), and which are covered by Microsoft's
online documentation. Also, the default behavior of AutoRun (i.e. whether it should be enabled in
general and/or on specific drives) can be modified via the Control Panel, programmatically, or via
the registry. Links to additional information on these topics are included below.

[MenuBox]

Because "autorun.inf" was designed from the beginning to be open to future extensions, it is
possible to add MenuBox-specific information to this file, which helps keeping the root of the
medium free of unnecessary items. Rather than keeping the MenuBox executable and its INI file
in the same directory, the two can be separated. This can further be combined with the fact that
"MenuBox.exe" may be renamed to whatever is more intuitive from a usability point of view (e.g.
"AutoRun.exe"). If the MenuBox executable does not find a matching INI file (e.g. "menubox.exe"
looks for "menubox.ini", "autorun.exe" looks for "autorun.ini", etc.) in the same directory, it looks
for a different directory reference in the "autorun.inf" file itself, or in "autorun.txt", in a key
named Directory in the [MenuBox] section. If this information is found, MenuBox acts as if it were
launched from that directory.

Some antivirus applications may block access to "autorun.inf". Also, some newer versions of
Windows do not automatically run the AutoRun action on all types of media (e.g. on USB flash
drives). In consideration of this it may be helpful to write a human-readable comment (lines
introduced by ";") in a text file named "autorun.txt", followed by the [MenuBox] section with the
Directory key.

Examples

In the following example "menubox.exe" (the MenuBox executable) and "menubox.ini" (the
MenuBox configuration file) are stored at the root of the medium (i.e. together with "autorun.inf")
and the behavior of MenuBox is defined in detail in the MenuBox configuration file (which is
opened automatically when MenuBox is launched with no command line options).

[AutoRun]
Open=MenuBox.exe

Reference

48

The following example additionally assigns an icon to the medium and groups the MenuBox
executable and configuration file, plus the icon file, in a subdirectory named "MenuBox" (this could
be any other name, e.g. "AutoRun", etc.)

[AutoRun]
Open=MenuBox\MenuBox.exe
Icon=MenuBox\MyCD.ico

In the following example, "MenuBox.exe" is renamed "AutoRun.exe", and a reference to the
MenuBox directory (containing the icon file and all MenuBox files except for the executable) is
added to the "autorun.inf" file itself. This results in a cleaner and user-friendly root, where
"AutoRun.exe" can be started manually by the user even if AutoRun is disabled.

[AutoRun]
Open=AutoRun.exe
Icon=MenuBox\MyCD.ico
[MenuBox]
Directory=MenuBox

The following example is a variation of the previous one, where "MenuBox.exe" is still renamed
"AutoRun.exe", however the reference to the MenuBox directory is added to an "autorun.txt" file.
This helps survive AutoRun being disabled or "autorun.inf" being blocked by an antivirus
application, and provides further information to the user.

; To access the content of this medium select AutoRun.exe.
;
; This project was created with MenuBox (www.menubox.com).

[MenuBox]
Directory=MenuBox

The following example uses the MenuBox command line functionality, rather than a MenuBox
configuration file, to open an HTML file using the default browser installed on the system.
Command line mode is very easy to use, but it cannot be used to check if a viewer is installed
and install it if necessary. (Note: although this example uses an external browser, HTML
documents can also be opened inside MenuBox.)

[AutoRun]
Open=AutoRun\MenuBox.exe Docs\index.html

The following example uses the MenuBox command line functionality to open a PowerPoint
presentation, making sure that the current directory is changed first, so that relative links from
the first PowerPoint file to other files in the same directory will work properly (be sure to also
enable the "Use relative path for hyperlink" option in PowerPoint). The capitalization has been
modified with respect to the previous examples to show how section and key names are not case
sensitive.

[autorun]
OPEN=menubox\menubox.exe /d:powerpoint presentation.pps

The above example can be applied in a similar way to other types of documents (e.g. PDF, Excel,
Word, etc.), but in all cases it does not check whether the system is actually capable of displaying
these documents. MenuBox includes powerful functionality to check whether an appropriate
viewer/player is installed, and, if not, to install the required software (which can be included on
your medium) before proceeding. This functionality cannot be expressed in a single command
line, and is therefore available through the configuration file.

Related Topics

For more information about paths and directories, see Paths and Current Directory.

For an introduction to using templates to build AutoRun-enabled projects, see The MenuBox
Wizard.

For more detailed reference information about the AutoRun specification, see Web Resources.

Reference

49

3.9 Redistributable Files

Overview

When you acquire MenuBox you are licensed to redistribute the MenuBox executable file with your
projects. Within this context you may also reuse the script code (i.e. the menubox.js file) and
background graphics (as provided in the text window sample files). Don't forget to sign the
project before redistributing it, which will enable the full software functionality without the "Free
Version" banner. Please understand that you may not redistribute a MenuBox license key which
was not registered either in your name (if you are the developer or data preparer of the project)
or in the name of the publisher of the project.

Location of Files

If you installed MenuBox to the default hard disk location on an English language version of
Windows you should find the redistributable files in "C:/Program Files/Cloanto/MenuBox/
Redistributable".

When redistributing the MenuBox files we recommend that you create a dedicated directory
(named as you prefer, e.g. "MenuBox", "AutoRun", etc.), so as to group all related files (which
may include one or more configuration files, e.g. "menubox.ini", HTML files, e.g. "index.html", and
additional files such as graphics and sound files). By doing so you will keep the file organization
as simple as possible, hiding technical content which does not need to be manually accessed by
your users, while also avoiding possible functional ambiguities related to linked items and the
current directory. The only file which, if used, cannot be placed in a subdirectory, but must always
be stored at the root of the distribution medium, is the AutoRun file ("autorun.inf").

Native 64-Bit Executable

The default MenuBox.exe executable file was designed to work on both 32-bit and 64-bit versions
of Windows. For custom deployments that require a specific environment such as the 64-bit
version of Windows PE (which does not include the WOW64 subsystem), a pure 64-bit version of
MenuBox is included in the set of redistributable files. If you need to use this version (which will
not run on 32-bit versions of Windows), take the MenuBox64.exe file and rename it to suit your
needs, replacing the default MenuBox.exe file.

Related Topics

For more information about signing a project, see The Sign Project Tool.

For information about renaming the executable and configuration files, see Command Line
Options.

For information about using multiple localized configuration files, see Configuration File Options.

For more information about paths and directories, see Paths and Current Directory.

For more information about AutoRun-enabled media, see AutoRun CDs and DVDs.

For more information about registering the software, see Registering MenuBox.

For an introduction to using templates to build sets of redistributable files, see The MenuBox
Wizard.

Part 4

Additional Resources

51

4 Additional Resources

This section covers:

Web Resources

ISO 639-1 Language Codes

Windows Character Set Codes

4.1 Web Resources

You may find the following resources on the MenuBox website of interest:

MenuBox Homepage

Frequently Asked Questions

Tutorials and Examples

Web Links

4.2 ISO 639-1 Language Codes

MenuBox supports the following two-letter language codes as per ISO 639-1 standard. This
specification always uses only two letters, e.g. Australian English, British English, Canadian
English and US English are all referenced by "en" (rather than "en-au", etc.) The same codes are
used in the file names of localized configurations and by the Language property of the MenuBox
Extended DOM.

Language ISO 639-1 Code

Afrikaans af

Albanian sq

Arabic ar

Armenian hy

Azeri az

Basque eu

Belarusian be

Bulgarian bg

Catalan ca

Chinese zh

Croatian hr

Czech cs

Danish da

Dutch nl

English en

Estonian et

Faroese fo

Farsi fa

Finnish fi

French fr

Galician gl

https://cloanto.com/menubox/
https://link.cloanto.net/man-menubox-faq
https://link.cloanto.net/man-menubox-tutorials
https://link.cloanto.net/man-menubox-links

Additional Resources

52

Language ISO 639-1 Code

Georgian ka

German de

Greek el

Gujarati gu

Hebrew he

Hindi hi

Hungarian hu

Icelandic is

Indonesian id

Italian it

Japanese ja

Kannada kn

Kazakh kk

Korean ko

Kyrgyz ky

Latvian lv

Lithuanian lt

Macedonian mk

Malay ms

Marathi mr

Mongolian mn

Norwegian Bokmål nb

Norwegian Nynorsk nn

Polish pl

Portuguese pt

Punjabi pa

Romanian ro

Russian ru

Sanskrit sa

Serbian sr

Slovak sk

Slovenian sl

Spanish es

Swahili sw

Swedish sv

Tamil ta

Tatar tt

Telugu te

Thai th

Additional Resources

53

Language ISO 639-1 Code

Turkish tr

Ukrainian uk

Urdu ur

Uzbek uz

Vietnamese vi

4.3 Windows Character Set Codes

MenuBox supports the following Windows character set codes for the display of text window mode
texts. If no character set is explicitly set by means of the CharacterSet key, the "ANSI" character
set (Windows 1252, a variant of ISO-8859-1) is used.

Character Set Windows Code

ANSI (Western European) 0

Arabic 178

Baltic 186

Chinese (Big-5) 136

Default 1

Eastern European 238

GB-2312 134

Greek 161

Hangul 129

Hebrew 177

Johab 130

Mac 77

OEM 255

Russian 204

Shift JIS 128

Symbol 2

Thai 222

Turkish 162

Vietnamese 163

The Johab character set is included with the Korean language edition of Windows. The Arabic and
Hebrew character sets are included with the Middle East language edition of Windows. The Thai
character set is included with the Thai language edition of Windows. The OEM value specifies a
character set that is operating-system dependent. On Windows 95, 98 and Me the Default value
indicates that the name and size of a font fully describe the logical font. On Windows NT, 2000, XP
and Server 2003 the Default value indicates that the character set is set to a value based on the
current system locale. For example, when the system locale is English (United States), it is set as
ANSI.

Back Cover

	Introducing MenuBox
	New Features

	Getting Started
	Overview
	The MenuBox Wizard
	The Sign Project Tool
	Registering MenuBox
	Quality Checklist

	Reference
	Command Line Options
	Configuration File Options
	Windowless Mode
	Text Window Mode
	HTML Window Mode
	The MenuBox Extended DOM
	Paths and Current Directory
	AutoRun CDs and DVDs
	Redistributable Files

	Additional Resources
	Web Resources
	ISO 639-1 Language Codes
	Windows Character Set Codes

